4 resultados para functional identification
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2014
Resumo:
Understanding heart development on a molecular level is a requirement for uncovering the causes of congenital heart diseases. Several genes have been implicated as critical for heart development. However, the inducers of these genes as well as their targets and pathways, remain largely unknown. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip® system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Five genes were selected for further characterization by whole mount in situ hybridization leading to the validation of their expression in the HPC. From those, Adtk1 and Ccbe1 were selected for functional analysis. Regarding to ccbe1, a more detailed WISH analysis was performed and showed that Ccbe1 is expressed specifically on the cardiac progenitors regions at HH4, more specifically in primary heart field and at later stages is present in the second heart field. Further functional analyses by knockdown and overexpression revealed an important role for Ccbe1 in early heart tube formation. Moreover, the results presented in this thesis suggested that Ccbe1 is a key gene during heart development and might be limited to multipotent and highly proliferative progenitors and downregulated upon cellular commitment into more specific cardiac phenotypes. Other of the genes identified, Adtk1 was also subjected to further functional studies. Knockdown of Adtk1 using morpholino oligonucleotides suggested that it might be necessary for the migration and fusion of the heart tube as well as for neural tube closure.
Resumo:
The identification of genes involved in signaling and regulatory pathways, and matrix formation is paramount to the better understanding of the complex mechanisms of bone formation and mineralization, and critical to the successful development of therapies for human skeletal disorders. To achieve this objective, in vitro cell systems derived from skeletal tissues and able to mineralize their extracellular matrix have been used to identify genes differentially expressed during mineralization and possibly new markers of bone and cartilage homeostasis. Using cell systems of fish origin and techniques such as suppression subtractive hybridization and microarray hybridization, three genes never associated with mechanisms of calcification were identified: the calcium binding protein S100-like, the short-chain dehydrogenase/reductase sdr-like and the betaine homocysteine S-methyltransferase bhmt3. Analysis of the spatial-temporal expression of these 3 genes by qPCR and in situ hybridization revealed: (1) the up-regulation of sdr-like transcript during in vitro mineralization of gilthead seabream cell lines and its specificity for calcified tissues and differentiating osteoblasts; (2) the up-regulation of S100-like and the down-regulation of bhmt3 during in vitro mineralization and the central role of both genes in cartilaginous tissues undergoing endo/perichondral mineralization in juvenile fish. While expression of S100-like and bhmt3 was restricted to calcified tissues, sdr-like transcript was also detected in soft tissues, in particular in tissues of the gastrointestinal tract. Functional analysis of gene promoters revealed the transcriptional regulation of the 3 genes by known regulators of osteoblast and chondrocyte differentiation/mineralization: RUNX2 and RAR (sdr-like), ETS1 (s100-like; bhmt3), SP1 and MEF2c (bhmt3). The evolutionary relationship of the different orthologs and paralogs identified within the scope of this work was also inferred from taxonomic and phylogenetic analyses and revealed novel protein subfamilies (S100-like and Sdr-like) and the explosive diversity of Bhmt family in particular fish groups (Neoteleostei). Altogether our results contribute with new data on SDR, S100 and BHMT proteins, evidencing for the first time the role for these three proteins in mechanisms of mineralization in fish and emphasized their potential as markers of mineralizing cartilage and bone in developing fish.
Resumo:
Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015