3 resultados para facial morphology
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Face detection and recognition should be complemented by recognition of facial expression, for example for social robots which must react to human emotions. Our framework is based on two multi-scale representations in cortical area V1: keypoints at eyes, nose and mouth are grouped for face detection [1]; lines and edges provide information for face recognition [2].
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.
Resumo:
Complete image ontology can be obtained by formalising a top-down meta-language wich must address all possibilities, from global message and composition to objects and local surface properties.