4 resultados para explanatory variables

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Time series of commercial landings from the Algarve (southern Portugal) from 1982 to 1999 were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These techniques were used to identify trends and explore the relationships between the response variables (annual landings of 12 species) and explanatory variables [sea surface temperature, rainfall, an upwelling index, Guadiana river (south-east Portugal) flow, the North Atlantic oscillation, the number of licensed fishing vessels and the number of commercial fishermen]. Landings were more highly correlated with non-lagged environmental variables and in particular with Guadiana river flow. Both techniques gave coherent results, with the most important trend being a steady decline over time. A DFA model with two explanatory variables (Guadiana river flow and number of fishermen) and three common trends (smoothing functions over time) gave good fits to 10 of the 12 species. Results of other models indicated that river flow is the more important explanatory variable in this model. Changes in the mean flow and discharge regime of the Guadiana river resulting from the construction of the Alqueva dam, completed in 2002, are therefore likely to have a significant and deleterious impact on Algarve fisheries landings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small pelagic fishes are particularly abundant in areas with high environmental variability (zones of coastal upwelling and areas of tidal mixing and river discharge), and because of this, their abundance suffers large inter-annual and inter-decadal fluctuations. In Portugal, the most important species in terms of landings are European sardine, Atlantic horse mackerel and Atlantic chub mackerel. Small pelagic fish landings account for 62.8 % of the total fish biomass and represent 32.7 % of the economical value of all catches. We have investigated trends in landings of these small pelagic fishes and detected the effects of environmental factors in this fishery. In order to explain the variability of landings of small pelagic fishes, we have used official landings (1965-2012) for trawling and purse seine fisheries and applied generalized linear models, using the North Atlantic Oscillation index (NAO) (annual and winter NAO index), sea surface temperature (SST), wind data (strength and North-South and East-West wind components) and rainfall, as explanatory variables. Regression analysis was used to describe the relationship between landings and SST. The models explained between 50.16 and 51.07 % of the variability of the LPUE, with the most important factors being winter NAO index, SST and wind strength. The LPUE of European sardine and Atlantic horse mackerel was negatively correlated with SST, and LPUE of Atlantic chub mackerel was positively correlated with SST. The use of landings of three important species of small pelagic fishes allowed the detection of variations in landings associated with changes in sea water temperature and NAO index.