3 resultados para ether extract
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Infectious diseases often hamper the production of aquatic organisms in aquaculture systems, causing economical losses, environmental problems and consumer safety issues. The conventional way aquaculture producers had to control pathogens was by means of synthetic antibiotics and chemicals. This procedure had consequences in the emergence of more resilient pathogens, drug contamination of seafood products and local ecosystems. To avoid the repercussions of antibiotic use, vaccination has greatly replaced human drugs in western fish farms. However there is still massive unregulated antibiotic use in third world fish farms, so less expensive therapeutic alternatives for drugs are desperately needed. An alternative way to achieve disease control in aquaculture is by using natural bioactive organic compounds with antibiotic, antioxidant and/or immunostimulant properties. Such diverse biomolecules occur in bacteria, algae, fungi, higher plants and other organisms. Fatty acids, nucleotides, monosaccharides, polysaccharides, peptides, polyphenols and terpenoids, are examples of these substances. One promising source of bioactive compounds are salt tolerant plants. Halophytes have more molecular resources and defence mechanisms, when compared with other tracheophytes, to deal with the oxidative stresses of their habitat. Many halophytes have been used as a traditional food and medical supply, especially by African and Asian cultures. This scientific work evaluated the antibiotic, antioxidant, immunostimulant and metal chelating properties of Atriplex halimus L., Arthrocnemum macrostachyum Moric., Carpobrotus edulis L., Juncus acutus L. and Plantago coronopus L., from the Algarve coast. The antibiotic properties were tested against Listonella anguillarum, Photobacterium damselae piscicida and Vibrio fischeri. The immunostimulant properties were tested with cytochrome c and Griess assays on Sparus aurata head-kidney phagocytes. J. acutus ether extract inhibited the growth of P. damselae piscicida. A. macrostachyum, A. halimus, C. edulis, Juncus acutus and P. coronopus displayed antioxidant, copper chelating and iron chelating properties. These plants show potential as sources of bioactive compounds with application in aquaculture and in other fields.
Resumo:
Cancer is a multistage process characterized by three stages: initiation, promotion and progression; and is one of the major killers worldwide. Oxidative stress acts as initiator in tumorigenesis; chronic inflammation promotes cancer; and apoptosis inactivation is an issue in cancer progression. In this study, it was investigated the antioxidant, antiinflammatory and antitumor properties of hexane, ether, chloroform, methanol and water extracts of five species of halophytes: A. macrostachyum, P. coronopus, J. acutus, C. edulis and A. halimus. Antioxidant activity was assessed by DPPH• and ABTS•+ methods, and the total phenolics content (TPC) was evaluated by the Folin-Ciocalteau method. The anti-inflammatory activity of the extracts was determined by the Griess method, and by evaluating the inhibition of NO production in LPS-stimulated RAW- 264.7 macrophages. The cytotoxic activity of the extracts against HepG2 and THP1 cell lines was estimated by the MTT assay, and the results obtained were further compared with the S17 non-tumor cell line. The induction of apoptosis of J. acutus ether extract was assessed by DAPI staining. The highest antioxidant activities was observed in C. edulis methanol and the J. acutus ether extracts against the DPPH• radical; and J. acutus ether and A. halimus ether extracts against the ABTS•+ radical. The methanol extracts of C. edulis and P. coronopus, and the ether extract of J. acutus revealed a high TPC. Generally the antioxidant activity had no correlation with the TPC. The A. halimus chloroform and P. coronopus hexane extracts demonstrated ability to reduce NO production in macrophages (> 50%), revealing their anti-inflammatory capacity. The ether extract of J. acutus showed high cytotoxicity against HepG2 cancer cells, with reduced cellular viability even at the lowest concentrations. This outcome was significantly lower than the obtained with the non-tumor cells (S17). This result was complemented by the induction of apoptosis.
Resumo:
In order to produce packaging films with a broad spectrum of action on microorganisms, the
effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied
separately on different microorganisms. Carvacrol was more effective against the grampositive
bacteria than against the gram-negative bacterium. GSE was not effective against
yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of
chitosan (as a third component with film forming properties) was carried out. Response
surface analysis showed several synergetic effects and three optimal AM combinations
(OAMC) were obtained for each microorganism. The experimental validation confirmed that
the optimal solutions found can successfully predict the response for each microorganism.
The optimization of mixtures of the three components, but this time, using the same
concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum
of activity. The results of the response surface analysis showed several synergistic effects for
all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal
mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents
was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also
at the OAMC. The RSA increased in the following order: chitosan