4 resultados para environmental factor

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidadde do Algarve, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series of commercial landings from the Algarve (southern Portugal) from 1982 to 1999 were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These techniques were used to identify trends and explore the relationships between the response variables (annual landings of 12 species) and explanatory variables [sea surface temperature, rainfall, an upwelling index, Guadiana river (south-east Portugal) flow, the North Atlantic oscillation, the number of licensed fishing vessels and the number of commercial fishermen]. Landings were more highly correlated with non-lagged environmental variables and in particular with Guadiana river flow. Both techniques gave coherent results, with the most important trend being a steady decline over time. A DFA model with two explanatory variables (Guadiana river flow and number of fishermen) and three common trends (smoothing functions over time) gave good fits to 10 of the 12 species. Results of other models indicated that river flow is the more important explanatory variable in this model. Changes in the mean flow and discharge regime of the Guadiana river resulting from the construction of the Alqueva dam, completed in 2002, are therefore likely to have a significant and deleterious impact on Algarve fisheries landings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.