9 resultados para cucumber cotyledons
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese de Doutoramento, Ciências Agrárias, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Sea cucumber fisheries are now occurring in most of the tropical areas of the world, having expanded from its origin in the central Indo-Pacific. Due to the overexploitation of these resources and the increasing demand from Asian countries, new target species from Mediterranean Sea and northeastern Atlantic Ocean are being caught. The fishery effects on biometry and genetic structure of two target species (Holothuria polii and H. tubulosa) from Turkey, were assessed. The heaviest and largest individuals of H. polii were found into the non-fishery area of Kusadasi, also showing the highest genetic diversity. Similar pattern was detected in H. tubulosa, but only the weight was significantly higher in the protected area. However, the observed differences on the fishery effects between species, could be explained considering the different percentage of catches (80% for H. polii and 20% for H. tubulosa).
Resumo:
We studied the genetic structure of the sea cucumber Holothuria (Roweothuria) polii (Delle Chiaje 1823) by analysing the mitochondrial DNA variation in two fragments of cytochrome oxidase I (COI) and 16S genes. Individuals were collected in seven locations along the Mediterranean Sea, which cover a wide range of the species distribution. We found high haplotype diversity for COI and moderate diversity for 16S, and low nucleotide diversity for both genes. Our results for the COI gene showed many recent and exclusive haplotypes with few mutational changes, suggesting recent or ongoing population expansion. The Western and Eastern Mediterranean populations exhibited slight but significant genetic differentiation (COI gene) with higher genetic diversity in the East. The most ancient haplotype was not present in the westernmost sampling location (SE Spain). The oldest expansion time was observed in Turkey, corresponding to mid-Pleistocene. Turkey had also the highest genetic diversity (number of total and exclusive haplotypes, polymorphisms, haplotype and nucleotide diversity). This suggests that this region could be the origin of the subsequent colonizations through the Mediterranean Sea, a hypothesis that should be assessed with nuclear markers in future research.
Resumo:
Sea cucumber stocks have been overfished in many countries. As a consequence, several species (Holothuria polii, Holothuria tubulosa and Holothuria mammata) are now caught in Turkish waters without adequate knowledge on their biology and ecology. Here, we address their morphometry, relationships among gutted length and weight, population dynamics, temporal evolution of catches, and we provide the first insights about technical aspects of their fisheries. The largest size classes of H. polii are missing from our sampling collection, possibly due to the heavy fishery pressure on this species. Significant differences in the eviscerated length and weight were found among the Turkish sampled localities for H. polii and H. tubulosa, respectively. These differences could be explained by higher food availability in some areas and/or differential fishery pressure. The size and weight of H. tubulosa specimens were smaller than those registered for the same species in Greek waters, where this species is not fished. All the studied species showed allometric growth. In the last two years, the sea cucumber fishery in Turkey has been increasing rapidly, reaching a total production of ca. 555 000 kg in 2012 (80% H. polii and 20% H. tubulosa plus H. mammata). For a correct management of these species, we recommend: 1) the reestablishment of species-specific closed fishery season according to the specific reproductive cycle; 2) the assessment of the exploited stocks from the Northern Turkish coasts with estimates of recovery time of their populations; 3) the reduction of fishery efforts, mainly on H. polii and H. tubulosa and 4) the establishment of protected areas (where sea cucumber fisheries are forbidden) to conserve healthy populations which will favour the recruitment on nearby areas.
Resumo:
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata
Resumo:
Dissertação mest., Biologia Marinha, Universidade do Algarve, 2007
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Parastichopus regalis (Cuvier, 1817) is the most expensive seafood product on the Catalonian market (NE Spain), with prices at approximately 130 €/Kg (fresh weight). Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. Here, we provide both the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI) and 16S genes and a morphological description of its population. Individual sea cucumbers were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia). We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed in the COI gene. The population pairwise fixation index (FST), AMOVA and correspondence analysis (CA) based on the COI gene revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g., microsatellites) is necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with a decrease in the size and weight averages and lower genetic diversity compared with locations that lack fishery pressure. For the appropriate management of this species, we suggest the following: 1) accurately assessing the stock status along the Spanish coasts; 2) studying the reproductive cycle of this target species and the establishment of a closed fishery season according to the reproductive cycle; and 3) establishing protected areas (i.e., not take zones) to conserve healthy populations and favour recruitment in the nearby areas.
Resumo:
Holothurian populations are under pressure worldwide because of increasing demand for beche-de-mer, mainly for Asian consumption. Importations to this area from new temperate fishing grounds provide economic opportunities but also raise concerns regarding future over-exploitation. Studies on the habitat preferences and movements of sea cucumbers are important for the management of sea cucumber stocks and sizing of no-take zones, but information on the ecology and behavior of temperate sea cucumbers is scarce. This study describes the small-scale distribution and movement patterns of Holothuria arguinensis in the intertidal zone of the Ria Formosa national park (Portugal).Mark/recapture studieswere performed to record theirmovements over time on different habitats (sand and seagrass). H. arguinensis preferred seagrass habitats and did not show a size or life stage-related spatial segregation. Its density was 563 ind. ha−1 and mean movement speed was 10 m per day. Movement speed did not differ between habitats and the direction of movement was offshore during the day and shoreward during the night. Median home range size was 35 m2 and overlap among home ranges was 84%. H. arguinensis' high abundance, close association with seagrass and easy catchability in the intertidal zone, indicate the importance of including intertidal lagoons in future studies on temperate sea cucumber ecology since those systems might require different management strategies than fully submerged habitats.