5 resultados para calibration of rainfall-runoff models

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This text describes a real data acquisition and identification system implemented in a soilless greenhouse located at the University of Algarve (south of Portugal). Using the Real Time Workshop, Simulink, Matlab and the C programming language a system was developed to perform real-time data acquisition from a set of sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time data acquisition and identification system implemented in a soil-less greenhouse located in the south of Portugal is described. The system performs real-time data acquisition from a set of sensors connected to a data logger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a greenhouse located at UTAD-University, the methods used to estimate in real-time the parameters of the inside air temperature model will be described. The structure and the parameters of the climate discrete-time dynamic model were previously identified using data acquired during two different periods of the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling the hydrology of hydrographic basins has shown itself as a useful tool in environment management. The hydrological models can be used for multiple purposes: estimate runoff from sequences of rainfall, access stream water quality, quantify the diffuse pollution that reaches water masses such as estuaries, rivers and lakes, etc. This study has as final objective to simulate and analyse the flow, sediment transport and water quality as a function of landuse and soil type in the basins of Maranhão and Pracana. The modelling system used is SWAT, Soil Water Assessment Tool. In this first phase of the study the hydrodynamic calibration of the model was performed using measurements of average daily flows in five stations. The model compares well with the measurements; the annual average flows are similar and the majority of the measured flow peaks coincide with the model peaks.