6 resultados para blind subterranean mole rat

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a monocular vision system for a navigation aid. The system assists blind persons in following paths and sidewalks, and it alerts the user to moving obstacles which may be on collision course. Path borders and the vanishing point are de-tected by edges and an adapted Hough transform. Opti-cal flow is detected by using a hierarchical, multi-scale tree structure with annotated keypoints. The tree struc-ture also allows to segregate moving objects, indicating where on the path the objects are. Moreover, the centre of the object relative to the vanishing point indicates whether an object is approaching or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the project "SmartVision: active vision for the blind" is to develop a small and portable but intelligent and reliable system for assisting the blind and visually impaired while navigating autonomously, both outdoor and indoor. In this paper we present an overview of the prototype, design issues, and its different modules which integrate a GIS with GPS, Wi-Fi, RFID tags and computer vision. The prototype addresses global navigation by following known landmarks, local navigation with path tracking and obstacle avoidance, and object recognition. The system does not replace the white cane, but extends it beyond its reach. The user-friendly interface consists of a 4-button hand-held box, a vibration actuator in the handle of the cane, and speech synthesis. A future version may also employ active RFID tags for marking navigation landmarks, and speech recognition may complement speech synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blavigator (blind navigator) is a vision aid for blind and visuaIIy impaired persons. It supports local navigation by detecting waIkable paths in the immediate vicinity of the user. It guides the user for centering on the path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blind deconvolution is studied in the underwater acoustic channel context, by time-frequency (TF) processing. The acoustic propagation environment is modelled by ray tracing and mathematically described by a multipath propagation channel. Representation of the received signal by means of a signal-dependent TF distribution (radially Gaussian kernel distribution) allowed to visualize the resolved replicas of the emitted signal, while signi cantly attenuating the inherent interferences of classic quadratic TF distributions. The source signal instantaneous frequency estimation was the starting point for both source and channel estimation. Source signature estimation was performed by either TF inversion, based on the Wigner-Ville distribution of the received signal, or a subspace- -based method. The channel estimate was obtained either via a TF formulation of the conventional matched- lter, or via matched- - ltering with the previously obtained source estimate. A shallow water realistic scenario is considered, comprising a 135-m depth water column and an acoustic source located at 90-m depth and 5.6-km range from the receiver. For the corresponding noiseless simulated data, the quality of the best estimates was 0.856 for the source signal, and 0.9664 and 0.9996 for the amplitudes and time-delays of the impulse response, respectively. Application of the proposed deconvolution method to real data of the INTIMATE '96 sea trial conduced to source and channel estimates with the quality of 0.530 and 0.843, respectively. TF processing has proved to remove the typical ill-conditioning of single sensor deterministic deconvolution techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SmartVision prototype is a small, cheap and easily wearable navigation aid for blind and visually impaired persons. Its functionality addresses global navigation for guiding the user to some destiny, and local navigation for negotiating paths, sidewalks and corridors, with avoidance of static as well as moving obstacles. Local navigation applies to both in- and outdoor situations. In this article we focus on local navigation: the detection of path borders and obstacles in front of the user and just beyond the reach of the white cane, such that the user can be assisted in centering on the path and alerted to looming hazards. Using a stereo camera worn at chest height, a portable computer in a shoulder-strapped pouch or pocket and only one earphone or small speaker, the system is inconspicuous, it is no hindrence while walking with the cane, and it does not block normal surround sounds. The vision algorithms are optimised such that the system can work at a few frames per second.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura e Pescas (Aquacultura), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015