6 resultados para Zostera marina.

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação mest., Biologia Marinha, Universidade do Algarve, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change scenarios comprise significant modifications of the marine realm, notably ocean acidification and temperature increase, both direct consequences of the rising atmospheric CO2 concentration. These changes are likely to impact marine organisms and ecosystems, namely the valuable seagrass-dominated coastal habitats. The main objective of this thesis was to evaluate the photosynthetic and antioxidant responses of seagrasses to climate change, considering CO2, temperature and light as key drivers of these processes. The methodologies used to determine global antioxidant capacity and antioxidant enzymatic activity in seagrasses were optimized for the species Cymodocea nodosa and Posidonia oceanica, revealing identical defence mechanisms to those found in terrestrial plants. The detailed analysis and identification of photosynthetic pigments in Halophila ovalis, H.stipulacea, Zostera noltii, Z marina, Z. capricorni, Cymodocea nodosa and Posidonia oceanica, sampled across different climatic zones and depths, also revealed a similarity with terrestrial plants, both in carotenoid composition and in the pigment-based photoprotection mechanisms. Cymodocea nodosa plants from Ria Formosa were submitted to the combined effect of potentially stressful light and temperature ranges and showed considerable physiological tolerance, due to the combination of changes in the antioxidant system, activation of the VAZ cycle and accumulation of leaf soluble sugars, thus preventing the onset of oxidative stress. Cymodocea nodosa plants living in a naturally acidified environment near submarine volcanic vents in Vulcano Island (Italy) showed to be under oxidative stress despite the enhancement of the antioxidant capacity, phenolics concentration and carotenoids. Posidonia oceanica leaves loaded with epiphytes showed a significant increase in oxidative stress, despite the increase of antioxidant responses and the allocation of energetic resources to these protection mechanisms. Globally, the results show that seagrasses are physiologically able to deal with potentially stressful conditions from different origins, being plastic enough to avoid stress in many situations and to actively promote ulterior defence and repair mechanisms when under effective oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Energias Renováveis e Gestão de Energia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015