2 resultados para Yield curve data sets
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
A non-linear least-squares methodology for simultaneously estimating parameters of selectivity curves with a pre-defined functional form, across size classes and mesh sizes, using catch size frequency distributions, was developed based on the model of Kirkwood and Walker [Kirkwood, G.P., Walker, T.L, 1986. Gill net selectivities for gummy shark, Mustelus antarcticus Gunther, taken in south-eastern Australian waters. Aust. J. Mar. Freshw. Res. 37, 689-697] and [Wulff, A., 1986. Mathematical model for selectivity of gill nets. Arch. Fish Wiss. 37, 101-106]. Observed catches of fish of size class I in mesh m are modeled as a function of the estimated numbers of fish of that size class in the population and the corresponding selectivities. A comparison was made with the maximum likelihood methodology of [Kirkwood, G.P., Walker, T.I., 1986. Gill net selectivities for gummy shark, Mustelus antarcticus Gunther, taken in south-eastern Australian waters. Aust. J. Mar. Freshw. Res. 37, 689-697] and [Wulff, A., 1986. Mathematical model for selectivity of gill nets. Arch. Fish Wiss; 37, 101-106], using simulated catch data with known selectivity curve parameters, and two published data sets. The estimated parameters and selectivity curves were generally consistent for both methods, with smaller standard errors for parameters estimated by non-linear least-squares. The proposed methodology is a useful and accessible alternative which can be used to model selectivity in situations where the parameters of a pre-defined model can be assumed to be functions of gear size; facilitating statistical evaluation of different models and of goodness of fit. (C) 1998 Elsevier Science B.V.
Resumo:
Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.