6 resultados para Water activity measurement

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Essential oils are used in Cosmetic, Perfumery, Food and Pharmaceutical Industries as flavours and/or medicines. However, part of the essential oil components that remains in the distillation water (hydrosol or distillate water) has been less studied both in chemical and biological terms. This research concerns the antioxidant activity, measured through several methods, of Lavandula officinalis L., Origanum majorana L., Rosmarinus officinalis L., Salvia officinalis L. and Thymus vulgaris L., Cinnamomum verum J. Presl. and Syzygium aromaticum (L.) Merrill and Perry hydrosols. The ability of hydrosols to prevent oxidation was checked by two main methods: prevention of lipid peroxidation through the measurement of malonaldehyde produced after degradation of hydroperoxides; and ability for scavenging free radicals including hydroxyl and superoxide anion radicals. The S. aromaticum and T. vulgaris hydrosols, predominantly constituted by eugenol and carvacrol, respectively, were the most effective as antioxidants, except for scavenging superoxide anion radical. In this case, L. officinalis hydrosol in which linalool prevailed was a stronger antioxidant. The worst hydrosol as antioxidant was that of S. officinalis, independent on the method checked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação mest., Estudos Marinhos e Costeiros, Universidade do Algarve, 2007

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than 3000 types of active pharmaceutical ingredients (APIs) are applied in Human and veterinary medicine practice. These compounds are considered an emergent class of environmental contaminants with the ability to cause damage and unexpected effects to aquatic organisms, namely in species of high commercial value. APIs are ubiquitous in the environment being frequently detected in influents and effluents of waste water treatment plants (WWTPs), surface waters and more distressingly in the public tap water in concentrations ranging from ng to μg.L-1. Considering these premises, the present thesis focused on APIs detection in the Arade river water, the impact of summer period in APIs’ concentration alterations applying the passive sampler device, POCIS (polar organic compound integrative sampler), as well as, the assessment of the effects caused by non-steroidal anti-inflammatory drugs (NSAID) ibuprofen (IBU) and diclofenac (DCF) and antidepressant selective serotonin reuptake inhibitor (SSRI) fluoxetine as single and mixture exposures along with a classical contaminant copper (Cu) on a non-target species, mussel Mytilus galloprovincialis. For this purpose, a multibiomarker approach was applied namely including biomarkers of oxidative stress (antioxidant enzymes activities of superoxide dismutase – SOD, catalase – CAT, glutathione reductase – GR and Phase II glutathione-S-transferase), damage - lipid peroxidation (LPO), neurotoxic effects (through the activity of acetylcholinesterase enzyme - AChE) and endocrine disruption (through vitellogenin-like proteins measurement applying the indirect method of alkali-labile phosphate - ALP) after exposure of mussel species’ to selected APIs at environmental relevant concentrations. The main results highlighted the occurrence of 19 APIs in the river Arade from several distinct therapeutic classes. Stimulant caffeine, antiasthmatic theophylline, NSAID ibuprofen and analgesic paracetamol presented the highest concentrations. Summer impact was inconclusive due to each API transient concentration in each month. The multibiomarker results revealed distinct responses towards each selected API (as single exposure or as mixtures) that were tissue and time dependent. Several multistressor interactions were proposed for each biomarker. The results also revealed APIs potential to induce oxidative stress, LPO, neurotoxicity and endocrine disruption even at extremely low concentrations on a species extremely vulnerable to APIs presence highlighting the urgency on the development of methodologies able to prevent its entrance in the aquatic environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015