3 resultados para Vermiculite. Pyrolysis. LDPE. SBA-15.
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Different nanocomposites have been attained by in situ polymerization based on ultra-high molecular weight polyethylene (UHMWPE) and mesoporous SBA-15, this silica being used for immobilization of the FI catalyst bis [N-(3-tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato] titanium (IV) dichloride and as filler as well. Two distinct approaches have been selected for supporting the FI catalyst on the SBA-15 prior polymerization. A study on polymerization activity of this catalyst has been performed under homogenous conditions and upon heterogenization. A study of the effect of presence of mesoporous particles and of the immobilization method is also carried out. Moreover, the thermal characterization, phase transitions and mechanical response of some pristine UHMWPEs and UHMWPE/SBA-15 materials have been carried out. Relationships with variations on molar mass, impregnation method of catalyst and final SBA-15 content have been established.
Resumo:
A hafnocene catalyst combined with methylaluminoxane (MAO) has been used as catalytic complex for the preparation of a set of polyethylene homopolymers by in situ polymerization under homogenous conditions and of different nanocomposites with mesoporous SBA- 15 particles, the latter playing the dual role of catalyst support and nanofiller. Distinct immobilization approaches have been explored for obtainment of these nanocomposites. Moreover, catalytic features, thermal stability, melting and crystallization transitions and mechanical behavior have been evaluated for those materials.
Resumo:
A new titanium catalyst easily synthesized from ethylmaltol bidentate chelator ligand was studied in homogeneous and heterogeneous ethylene polymerization. The dichlorobis(3-hydroxy-2-ethyl-4-pyrone)titanium(IV) complex was characterized by 1H and 13C NMR (nuclear magnetic resonance), UV-Vis and elemental analysis. Theoretical study by density functional theory (DFT) showed that the complex chlorines exhibit cis configuration, which is important for the activity in olefin polymerization. The complex was supported by two methods, direct impregnation or methylaluminoxane (MAO) pre-treatment, in five mesoporous supports: MCM-41 (micro and nano), SBA-15 and also the corresponding modified Al species. All the catalytic systems were active in ethylene polymerization and the catalytic activity was strongly influenced by the method of immobilization of the catalyst and the type of support.