4 resultados para Validation model

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A biological disparity energy model can estimate local depth information by using a population of V1 complex cells. Instead of applying an analytical model which explicitly involves cell parameters like spatial frequency, orientation, binocular phase and position difference, we developed a model which only involves the cells’ responses, such that disparity can be extracted from a population code, using only a set of previously trained cells with random-dot stereograms of uniform disparity. Despite good results in smooth regions, the model needs complementary processing, notably at depth transitions. We therefore introduce a new model to extract disparity at keypoints such as edge junctions, line endings and points with large curvature. Responses of end-stopped cells serve to detect keypoints, and those of simple cells are used to detect orientations of their underlying line and edge structures. Annotated keypoints are then used in the leftright matching process, with a hierarchical, multi-scale tree structure and a saliency map to segregate disparity. By combining both models we can (re)define depth transitions and regions where the disparity energy model is less accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional primitive equation model and its application to a tidal estuary is described. The model solves the primitive equations for incompressible fluids with Boussinesq and hydrostatic approximations. The discretization is based on the finite volume method and allows a general vertical coordinate. The computational code is implemented in such a way that different vertical coordinates can be used in different parts of the domain. The model was designed to be able to simulate the flow both in the open ocean and in coastal and estuarine zones and can be coupled in a simple way to ecological models. The model was implemented successfully in several estuarine and coastal areas. Results are show for the Sado estuary in Portugal to illustrate model accuracy and potential. Quantitative validation is based on field data (water levels and velocities) while qualitative verification is based on the analysis of secondary flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An intercomparison study is carried out between two models with different formulations and spatial discretizations in order to overcome the limitations posed by the standard calibration and validation procedures and improve confidence in the hydrodynamic results for the Patos Lagoon. Numerical simulations were carried out applying the TELEMAC and MOHID models, based on the same boundary conditions and identical calibration coefficients so differences in calculated flow conditions result from the formulations and parameterizations of each model. Results from both models are compared with measurements from three stations inside the lagoon. Preliminary results indicate that both models compare well with the measurements and with each other. These results increase the confidence on hydrodynamic results for the Patos Lagoon and provide the first step towards water quality studies for the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic predictions of the recently developed TRACEO ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications. (C) 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4734236]