2 resultados para Vacuum evaporation

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The setting up of methodologies that reduce the size of ice crystals and reduce or inhibit the recrystalli- sation phenomena could have an extraordinary significance in the final quality of frozen products and consequently bring out new market opportunities. In this work, the effect of an antifreeze protein type I (AFP-I), by vacuum impregnation (VI), on frozen watercress was studied. The VI pressure, samples’ weight, Hunter Lab colour, scanning electron microscopy (SEM), and a wilting test were analysed in this work. The water intake of watercress samples augmented with vacuum pressure increase. The results also showed that, independently from the vacuum pressure used, the Lab colour parameters between raw and impregnated samples were maintained, showing no significant differences (P > 0.05). A VI of 58 kPa, during 5 min, allowed impregnating the AFP-I solution (0.01 mg ml-1) into the water- cress samples. The scanning electron microscopy (SEM) analysis showed the AFP-I impregnated frozen samples with better cell wall definition and rounded cell shape with smaller ice crystals compared with the control samples. The wilting test results corroborated that AFP-I is a valuable additive, since the leaves impregnated with AFP-I showed higher turgidity compared to the control samples. The present findings will help to better understand the effect of AFP-I, particularly, on frozen water- cress microstructure and its importance as valuable food additive in frozen foods and mainly in leafy vegetables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier diodes based on Al/poly(3-methylthiophene)/Au have been fabricated and their electrical behaviour investigated. I-V characteristics revealed a dependence on the fabrication conditions, specifically on the time under vacuum prior to evaporation of the rectifying contact and post-metal annealing at elevated temperature. The available evidence is consistent with the formation of a thin insulating layer between the metal and the polymer following these procedures. Long periods under vacuum prior to deposition of the aluminium electrode reduced the likelihood of such a layer forming. Capacitance-voltage plots of the devices were stable to voltage cycling, so long as the forward voltage did not exceed similar to 1 V. Above this a small degree of hysteresis was observed, which is attributed to the filling/emptying of interface states or traps in the polymer.