3 resultados para Uniqueness of equilibrium
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
We report the exploration of some unique metabolic pathways in Perkinsus olseni a marine protist parasite, responsible to significant mortalities in mollusks, especially in bivalves all around the world. In Algarve, south of Portugal carpet shell clam Ruditapes decussatus mortalities can reach up to 70%, causing social and economic losses. The objective of studying those unique pathways, is finding new therapeutic strategies capable of controlling/eliminating P. olseni proliferation in clams. In that sense metabolic pathways, were explored, and drugs affecting these cycles were tested for activity. The first step involved the identification of the genes behind those pathways, the reconstitution of the main steps, and molecular characterization of those genes and later on, the identification of possible targets within the genes studied. Metabolic cycles were screened due to the fact of not being present in host or differ in a critical way, such as the following pathways: shikimate, MEP-‐ isoprenoids, Leloir cycle for chitin production, purine biosynthesis (unique among protists), the de novo synthesis of folates (absent in metazoa) and some unique genes like, the alternative oxidase (a branch of respiratory chain) and the hypoxia sensor HPH. All those pathways were covered and possible chemical inhibition using therapeutic drugs was tested with positive results. The relation between the common host Ruditapes decussatus and P. olseni was also explored in a dimension not possible some years ago. With the accessibility to second generation sequencers and microarray analysis platforms, genes involved in host defense or parasite virulence and resistance to the host were deciphered, allowing aiming to new targets (mechanisms and pathways), offering new possibilities for the control of Perkinsus in close environments. The thousands of genes, generated by this work, sequenced and analyzed from this commercial valuable clam and for Perkinsus olseni will be an important and value tool for the scientific community, allowing a better understanding of host-‐parasite interactions, promoting the usage of P. olseni as an emerging model for alveolata parasites.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
The free metal ion concentrations obtained by SSCP (stripping chronopotentiometry at scanned deposition potential) and by AGNES (absence of gradients and Nernstian equilibrium stripping) techniques have been compared and the usefulness of the combination of both techniques in the same electrochemical cell for trace metal speciation analysis is assessed. The free metal ion concentrations and the stability constants obtained for lead(II) and cadmium(II) complexation by pyridinedicarboxylic acid, by 40 nm radius carboxylated latex nanospheres and by a humic acid extracted from an ombrotrophic peat bog were determined. Whenever possible, the free metal ion concentrations were compared with the theoretical predictions of the code MEDUSA and with the free metal ion concentrations estimated from ion selective electrodes (ISE). SSCP values were in agreement with the ones obtained by AGNES, and both of them agreed reasonably with the ISE values and the theoretical predictions. For the lead(II)-humic acid, it was not possible to obtain the stability constants by SSCP due to the heterogeneity effect. However, using AGNES it is possible to obtain, for these heterogeneous systems, the free bulk metal concentration, which allows us to retrieve the stability constant at bulk conditions.