6 resultados para Underwater passive acoustic monitoring
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The benefits of protection of a small (4.3 km(2)) marine protected area (MPA) for Senegalese sole, Solea senegalensis, were investigated through experimental fishing trials and long-term (up to 293days) passive acoustic telemetry. A total of 106 trammel net sets were carried out between 2007 and 2011. Significant differences in abundance and biomass of sole between bottom types/depths (sandy bottoms between 12 and 20m deep vs muddy bottoms between 35 and 45m deep) were found, but no significant differences were attributable to the implementation of the no-take area. Passive acoustic telemetry revealed that most Senegalese sole spent a large part of their time between first and last detections (average residency index=69%) inside a relatively small area (average 95%=1.2km(2)), during which they preferred sandy bottoms, the most common habitat inside the MPA. Results also demonstrated that Senegalese sole do regular excursions beyond reserve boundaries, eventually emigrating from the MPA. The results suggest that small coastal MPAs providing adequate habitat may protect individuals of this species while allowing for moderate levels of adult spillover to neighbouring areas.
Resumo:
It has been hypothesized, based on anecdotal information and reports, that adult white seabream migrate and aggregate during spawning. Because most of the past telemetric studies on this ecologically and commercially important species were short in duration and did not cover the reproductive season, we set out to use longer-term passive acoustic telemetry to test this hypothesis. We found that white seabream expands its home range and increases the frequency of forays during the reproductive season, but found no obvious signs of spawning aggregations. Our results thus provide evidence for short-range behavioral shifts in fish space use related to reproductive activity, and support the notion that small MPAs may be effective in managing reef fish populations by effectively protecting their spawning biomass. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Artificial reefs are used as management tools for coastal fisheries and ecosystems and the knowledge of habitat use and fish movements around them is necessary to understand their performance and improve their design and location. In this study wild specimens of Diplodus sargus were tagged with acoustic tags and their movements were tracked using passive acoustic telemetry. The monitored area enclosed a natural rocky reef, an adjacent artificial reef (AR) and shallower sandy bottoms. Most of the fish were close to full time residents in the monitored area. Results revealed that D. sargus use the natural reef areas on a more frequent basis than the AR. However, excursions to the adjacent AR and sandy bottoms were frequently detected, essentially during daytime. The use of acoustic telemetry allowed a better understanding of the use of artificial reef structures and its adjacent areas by wild D. sargus providing information that is helpful towards the improvement of AR design and location. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Short-time site fidelity and movements of gilthead sea bream (Sparus aurata) in a coastal lagoon were determined using passive acoustic telemetry. Nine fish, ranging from 20.1 to 32.5 cm total length, were surgically implanted with acoustic transmitters and monitored for up to 179 days. Minimum convex polygon areas ranged from 18,698.6 m(2) to 352,711.9 m(2). Home range sizes were small, with individuals using core areas on a daily basis. However, these core areas shifted within the study site over time towards the opening to the sea. Two different diel behaviors were recorded, with some individuals more active at night and others during day time. Some individuals also demonstrated homing abilities, returning to the capture site after being released more than 4 km away. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The EU-funded project UAN - Underwater Acoustic Network aims at conceiving, developing and testing at sea an innovative and operational concept for integrating in a unique communication system submerged, surface and aerial sensors with the objective of protecting off-shore and coastline critical infrastructures. A crucial aspect of the project consisted in the use of autonomous underwater vehicles (AUVs) as mobile nodes in the underwater acoustic communication network. In particular, AUVs have the role of adapting the network geometry to the variation of the acoustic channel. This paper reports on the project concept and vision as well as on the progress of its various development phases. The recent at-sea successes that have been demonstrated within the UAN framework are detailed and results of the final UAN project demonstration, UAN11, held in the May of 2011, are reported. The UAN network was in operation for five continuous days with up to five nodes, of which three of them were mobile nodes. © IFAC.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016