2 resultados para Turbines hydrauliques
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
A gas turbine is made up of three basic components: a compressor, a combustion chamber and a turbine. Air is drawn into the engine by the compressor, which compresses it and delivers it to the combustion chamber. There, the air is mixed with the fuel and the mixture ignited, producing a rise of temperature and therefore an expansion of the gases. These are expelled through the engine nozzle, but first pass through the turbine, designed to extract energy to keep the compressor rotating [1]. The work described here uses data recorded from a Rolls Royce Spey MK 202 turbine, whose simplified diagram can be seen in Fig. 1. Both the compressor and the turbine are split into low pressure (LP) and high pressure (HP) stages. The HP turbine drives the HP compressor and the LP turbine drives the LP compressor. They are connected by concentric shafts that rotate at different speeds, denoted as NH and NL.
Resumo:
The application of a supercritical Rankine cycle in combined cycles does not happen in today’s thermoelectric power stations. Nevertheless, the most recent development in gas turbines, that allows a high efficiency and high exhaust gases temperatures, and the improvement of high pressure and temperature alloys, makes this cycle possible. This study’s intent is to prove the viability of this combined cycle, since it can break the 60% efficiency barrier, which is the plafond in actual power stations. To attain this target, several configurations for this cycle have been simulated, optimized and analyzed [1]. The simulations were done with the computational program IPSEpro [2] and the optimizations were effectuated with software developed for the effect, using the DFP method [3]. In parallel with the optimization that claims the cycle’s efficiency maximization, an exergetic analysis was also made [4] to all the cycle components. In opposite to what happens in subcritical combined cycles, it was demonstrated that in supercritical combined cycles the higher efficiency takes place with a single steam pressure in the heat recovery steam generator (HRSG).