2 resultados para Tridimensional images
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
In this study, Artificial Neural Networks are applied to multistep long term solar radiation prediction. The networks are trained as one-step-ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and Auto-regressive with exogenous inputs solar radiationmodels are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images. The input-output structure of the neural network models is selected using evolutionary computation methods.
Resumo:
In this work, a comprehensive review on automatic analysis of Proteomics and Genomics images is presented. Special emphasis is given to a particularly complex image produced by a technique called Two-Dimensional Gel Electrophoresis (2-DE), with thousands of spots (or blobs). Automatic methods for the detection, segmentation and matching of blob like features are discussed and proposed. In particular, a very robust procedure was achieved for processing 2-DE images, consisting mainly of two steps: a) A very trustworthy new approach for the automatic detection and segmentation of spots, based on the Watershed Transform, without any foreknowledge of spot shape or size, and without user intervention; b) A new method for spot matching, based on image registration, that performs well for either global or local distortions. The results of the proposed methods are compared to state-of-the-art academic and commercial products.