3 resultados para Temperature measurement
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
In this paper, an open source solution for measurement of temperature and ultrasonic signals (RF-lines) is proposed. This software is an alternative to the expensive commercial data acquisition software, enabling the user to tune applications to particular acquisition architectures. The collected ultrasonic and temperature signals were used for non-invasive temperature estimation using neural networks. The existence of precise temperature estimators is an essential point aiming at the secure and effective applica tion of thermal therapies in humans. If such estimators exist then effective controllers could be developed for the therapeutic instrumentation. In previous works the time-shift between RF-lines echoes were extracted, and used for creation of neural networks estimators. The obtained estimators successfully represent the temperature in the time-space domain, achieving a maximum absolute error inferior to the threshold value defined for hyperthermia/diathermia applications.
Resumo:
Aiming at time-spatial characterization of tissue temperature when ultrasound is applied for thermal therapeutic proposes two experiments were developed considering gel-based phantoms, one of them including an artificial blood vessel. The blood vessel was mimicking blood flow in a common carotid artery. For each experiment phantoms were heated by a therapeutic ultrasound (TU) device emitting different intensities (0.5, 1, 1.5, 1.8 W/cm2). Temperature was monitored by thermocouples and estimated through imaging ultrasound transducer's signals within specific special points inside the phantom. The temperature estimation procedure was based on temporal echo-shifts (TES), computed based on echo-shifts collected through image ultrasound (IU) transducer. Results show that TES is a reliable non-invasive method of temperature estimation, regardless the TU intensities applied. Presence of a pulsatile blood flow vessel in the focal point of TU transducer reduces thermal variation in more than 50%, also affecting the temperature variation in the surrounding area. In other words, vascularized tissues require longer ultrasound thermal therapeutic sessions or higher TU intensities and inclusion of IU in the therapeutic procedure enables non-invasive monitoring of temperature. © 2013 IEEE.