7 resultados para Sucos de frutas - Encapsulação
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
A aquacultura é uma área em expansão devido ao aumento do consumo de peixe nos últimos anos sendo que para os estágios iniciais do desenvolvimento larvar é utilizado alimento vivo, como Artémia. Nos últimos anos tem-se tentado obter dietas inertes devido às limitações inerentes à utilização de alimento vivo. Estas dietas apresentam na sua constituição uma componente muito hidrossolúvel que facilmente se perde por lixiviação, constituída por compostos de baixa massa molecular, mas que são determinantes para o crescimento das larvas. O objetivo deste trabalho foi utilizar inicialmente os lipossomas e posteriormente as micropartículas de quitosano (CS) como veículos para tentar formular microdietas para a alimentação de larvas de peixe. Para tal, foram encapsulados o hidrolisado de proteína de peixe (CPSP 90®) e um mistura de vitaminas, oligo-elementos e minerais (Pré-Mix PVO-40®). Os resultados obtidos indicam que os lipossomas apresentam tamanhos entre os 150-600 nm, dependendo do número de ciclos de congelação/aquecimento. Embora se tenham obtido eficiências de encapsulação de CPSP na ordem dos 90-95%, concluiu-se que esta tecnologia não é rentável para a produção de microdietas para larvas de peixe devido à reduzida capacidade de produção diária. Desta forma, desenvolveu-se um segundo sistema, as micropartículas de CS, que evidenciaram tamanhos de 2.7 - 8.7 μm, dependendo da percentagem de CS e CPSP:PM e uma eficiência de encapsulação de 95%. A formulação CS:CPSP:PM 2:6:0.5 apresentou a libertação mais baixa (40% em 30-60 min), permitindo que os restantes 60% estejam disponíveis para ingestão. Foi observado também que o perfil de libertação depende da quantidade de polímero presente nas micropartículas. A caracterização dos dois tipos de sistema estudados indica que não podem ser utilizadas como formulação final para a alimentação de larvas de peixe devido ao seu tamanho, mas que têm o perfil ideal para fazer parte de uma sistema complexo, em que exista uma segunda micropartícula externa.
Resumo:
Numa Europa caracterizada pelos excedentes de produção agrícola, a qualidade das produções é um factor determinante da rentabilidade das explorações agrícolas. Podemos dizer mesmo que, nos dias de hoje, é mais importante produzir com qualidade que produzir em quantidade. A qualidade de um fruto cítrico é determinada por uma série de parâmetros (tamanho, características organolépticas, cor externa e interna, ausência de lesões, facilidade de descascar, etc.) que analisaremos a seguir e que dependem do cultivar e das técnicas culturais utilizadas.
Resumo:
O cancro é uma das mais conhecidas e temidas doenças existentes e, como tal, existe um grande interesse no desenvolvimento de métodos de tratamento das afeções tumorais. Os grandes avanços da quimioterapia têm dado ótimos resultados no tratamento do cancro. Contudo, a administração de fármacos antineoplásicos não garante uma elevada eficácia pois os tecidos tumorais apresentam propriedades estruturais que dificultam o transporte de agentes terapêuticos, como a disposição heterogénea dos vasos sanguíneos, a ausência de sistema linfático funcional, as inúmeras barreiras de transporte que o fármaco enfrenta até chegar às células alvo ou a disparidade da expressão de antigénios e recetores nas próprias células. Para além disso, os agentes quimioterapêuticos exibem elevada toxicidade não específica, afetando tanto as células tumorais como as células saudáveis, o que resulta frequentemente em severos efeitos secundários. Se a dose for reduzida para diminuir estes efeitos, a eficácia do tratamento diminuirá também; por outro lado, o aumento da dose, apesar de permitir um melhor controlo do crescimento do tumor, leva também a uma maior toxicidade nos tecidos saudáveis. Para contornar este efeito têm-se desenvolvido diferentes tipos de sistemas de libertação de fármacos com o objetivo de maximizar o direcionamento para os tumores e minimizar a toxicidade sistémica. Entre estas alternativas figuram os chamados smart polymers, que são macromoléculas que sofrem rápidas e reversíveis mudanças na sua estrutura em resposta a estímulos, os quais correspondem geralmente a pequenas alterações no meio, como pH, temperatura, incidência de radiação ou presença de determinadas substâncias químicas. Assim, associando um fármaco a um destes polímeros, em geral recorrendo a técnicas de encapsulação, é possível fazer com que a libertação do fármaco ocorra apenas nas células tumorais, seja por estas apresentarem as características necessárias para alterar a estrutura dos polímeros (acidez ou temperatura diferente das células saudáveis, por exemplo) ou por se conferir externamente à zona do tumor essas mesmas características (por exemplo, incidindo radiação na zona afetada). Os smart polymers têm outras vantagens. Os fármacos conjugados com estes polímeros têm tendência para se acumularem nos tecidos tumorais devido aos altos efeitos de permeabilidade e retenção nestas células e também demonstram menor toxicidade sistémica comparativamente com o fármaco livre. Além disso, os sistemas de libertação poliméricos podem permitir o aumento do tempo de semivida plasmático e da solubilidade dos fármacos de baixo peso molecular, assim como a sua libertação controlada. Com este trabalho pretende-se estudar mais profundamente de que forma é que a utilização dos smart polymers pode aumentar a eficácia e diminuir a toxicidade sistémica das terapias anticancerígenas no tratamento de afeções tumorais.
Resumo:
Os sistemas de veiculação de fármacos, presentemente, apresentam-se como uma alternativa viável às terapias convencionais. De entre os diversos sistemas de transporte passíveis de associar substâncias farmacologicamente activas, destacam-se os de base lipídica, em particular, os lipossomas, os quais constituem um dos sistemas mais estudados e com maior sucesso, comprovado pelo número de produtos em fase clínica ou já aprovados para utilização em humanos. Os lipossomas são estruturas constituídas por membranas lipídicas organizadas em bicamadas, fechadas e concêntricas, que permitem a encapsulação de moléculas hidrofílicas no espaço interno aquoso e hidrofóbicas na bicamada lipídica. No presente trabalho, foram desenvolvidas metodologias com vista à encapsulação em lipossomas do aminoglicosídeo, a Paromomicina (PRM). Este fármaco está indicado para o tratamento de doenças infecciosas nomeadamente parasitárias e bacterianas. Algumas das principais desvantagens resultantes da sua utilização em clínica são, o reduzido tempo de circulação na corrente sanguínea, rápida excreção renal e consequentemente insuficiente concentração intracelular do fármaco. Como forma de ultrapassar algumas das desvantagens apresentadas, foram desenvolvidas formulações lipossomais de PRM com vista a melhorar o desempenho deste antibiótico. Para tal, foram preparadas e caracterizadas diversas formulações lipossomais de PRM com vista à selecção daquelas que apresentem maiores valores de eficácia de encapsulação (E.E.), e superior estabilidade. Com as formulações seleccionadas foram realizados estudos in vitro de interacção lipossoma-célula, utilizando uma linha celular humana monocítica leucémica, THP-1. De entre as formulações desenvolvidas e seleccionadas para os estudos in vitro de a formulação DPPC:DPPG, foi uma das que apresentou uma E.E. superior a 80% e valores de internalização celular superiores a 90%.
Resumo:
O cancro é hoje em dia um dos principais fatores de morbilidade e mortalidade. No ano de 2010, o National Institute of Health estimou os custos associados ao cancro em cerca de 263,8 biliões de dólares. Desta forma, a investigação nesta área continua a procurar formas de otimizar os tratamentos, aliviando o sofrimento dos doentes e reduzindo os custos associados à doença. O tratamento do cancro tem evoluído no sentido de atingir uma maior seletividade para as células tumorais. As limitações associadas à quimioterapia com apenas um fármaco conduziram ao aparecimento de novas estratégias, nas quais se combinam diferentes terapêuticas, com diferentes mecanismos de ação, levando a um efeito sinergístico. Esta estratégia permite a administração de uma menor dose de cada fármaco, diminuindo assim os efeitos adversos. No entanto, existem limitações clínicas para estas terapêuticas convencionais relacionadas com as propriedades dos transportadores das membranas celulares, a baixa biodisponibilidade e a distribuição dos fármacos junto das células tumorais. A pesquisa de novas estratégias tornou-se uma necessidade para a obtenção de uma distribuição mais efetiva e especifica dos fármacos nas células tumorais. Assim, os nanossistemas foram extensamente estudados para aumentar a eficácia dos tratamentos. A nanotecnologia, através da encapsulação dos fármacos, permitiu melhorar os parâmetros farmacocinéticos dos fármacos, tendo ainda a vantagem de se poder fazer uma vetorização para as células tumorais, tendo por base o reconhecimento de recetores.
Resumo:
Tese de doutoramento, Ciências Biotecnológicas (Biotecnologia Alimentar), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016