3 resultados para Submerged aquatic vegetations
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
In ecotoxicology a major focus is in the aquatic environment, not only because it presents a great economic value to man but it is an ecosystem widely affected by the growing anthropogenic pollution. Most of the studies performed relate to adverse effects in development, reproductive or endocrine disruption but little is known about the possible effects in bone formation and skeletal development. In this study, we set out to evaluate the effects of 8 aquatic pollutants on the skeletal development using an in vivo system, the zebrafish larvae aged 20 days post-fertilization, through chronic exposure. Several endpoints were considered such as the cumulative mortality, total length, occurrence of skeletal deformities and marker gene expression. We were able to establish LD50 values for some pollutants, like 3-methylcholanthrene, lindane, diclofenac, cobalt and vanadate and found that the total length was not affected by any of the pollutants tested. Cobalt was the most harmful chemical to affect hatching time, severely affecting the ability of the zebrafish embryos to hatch and overall the number of deformities increased upon exposure to tested chemicals but no patterns of deformities were identified. We also propose that 3-methylcholanthrene has an osteogenic effect, affecting osteoblast and osteoclast function and that op levels can act as a mediator of 3-methylcholanthrene toxic stress to the osteoblast. In turn we found naphthalene to probably have a chondrogenic effect. Our results provided new insights into the potential osteotoxicity of environmental pollutants. Future studies should aim at confirming these preliminary data and at determining mechanisms of osteotoxicity.
Resumo:
The submerged sea caves of Sagres are located within the “Parque Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV)” Marine Protected Area (MPA). This MPA integrates the national network of protected areas, addressed by the National Institute for Nature Conservation and Forest (ICNF) and was declared Site of Community Importance (SCI) under the Habitats Directive. Under the Annex I from the Habitat Directive these habitat caves are included in “8330 Submerged or partially submerged sea caves”. This conservation status should provide sufficient concern to have detailed information on biodiversity. However, among marine researcher, little is still known about these submerged sea caves and tunnels habitats. The only well-known study dealing with the Sagres sea caves was conducted in the late 80s and was only published in 2001. For effective management of such specific habitats a clear understanding of their localization and extension, the assessment of the biological communities, its conservation importance, its monitoring options and their sensitivity to natural change and human disturbance need to be a relatively clear. This report, produced under the MeshAtlantic Project, provides an overview of the available published and unpublished information relevant for the conservation management of the subtidal caves of Sagres. It mainly aims to be a base contribution for future studies.
Resumo:
Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.