2 resultados para Spectral-line Shapes
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
In his introduction, Pinna (2010) quoted one of Wertheimer’s observations: “I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of color. Do I have ‘327’? No. I have sky, house, and trees.” This seems quite remarkable, for Max Wertheimer, together with Kurt Koffka and Wolfgang Koehler, was a pioneer of Gestalt Theory: perceptual organisation was tackled considering grouping rules of line and edge elements in relation to figure-ground segregation, i.e., a meaningful object (the figure) as perceived against a complex background (the ground). At the lowest level – line and edge elements – Wertheimer (1923) himself formulated grouping principles on the basis of proximity, good continuation, convexity, symmetry and, often forgotten, past experience of the observer. Rubin (1921) formulated rules for figure-ground segregation using surroundedness, size and orientation, but also convexity and symmetry. Almost a century of research into Gestalt later, Pinna and Reeves (2006) introduced the notion of figurality, meant to represent the integrated set of properties of visual objects, from the principles of grouping and figure-ground to the colour and volume of objects with shading. Pinna, in 2010, went one important step further and studied perceptual meaning, i.e., the interpretation of complex figures on the basis of past experience of the observer. Re-establishing a link to Wertheimer’s rule about past experience, he formulated five propositions, three definitions and seven properties on the basis of observations made on graphically manipulated patterns. For example, he introduced the illusion of meaning by comics-like elements suggesting wind, therefore inducing a learned interpretation. His last figure shows a regular array of squares but with irregular positions on the right side. This pile of (ir)regular squares can be interpreted as the result of an earthquake which destroyed part of an apartment block. This is much more intuitive, direct and economic than describing the complexity of the array of squares.
Resumo:
This study describes the on-line operation of a seismic detection system to act at the level of a seismic station providing similar role to that of a STA /LTA ratio-based detection algorithms. The intelligent detector is a Support Vector Machine (SVM), trained with data consisting of 2903 patterns extracted from records of the PVAQ station, one of the seismographic network's stations of the Institute of Meteorology of Portugal (IM). Records' spectral variations in time and characteristics were reflected in the SVM input patterns, as a set of values of power spectral density at selected frequencies. To ensure that all patterns of the sample data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. After having been trained, the proposed system was experimented in continuous operation for unseen (out of sample) data, and the SVM detector obtained 97.7% and 98.7% of sensitivity and selectivity, respectively. The same type of ANN presented 88.4 % and 99.4% of sensitivity and selectivity when applied to data of a different seismic station of IM. © 2013 Springer-Verlag Berlin Heidelberg.