3 resultados para Spectral method with domain decomposition
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Damage assessment of structures with a mechanical non linear model demands the representation of seismic action in terms of an accelerogram (dynamic analysis) or a response spectrum (pushover analysis). Stochastic ground motion simulation is largely used in regions where seismic strong-motion records are available in insufficient number. In this work we present a variation of the stochastic finite-fault method with dynamic corner frequency that includes the geological site effects. The method was implemented in a computer program named SIMULSIS that generate time series (accelerograms) and response spectra. The program was tested with the MW= 7.3 Landers earthquake (June 28, 1992) and managed to reproduce its effects. In the present work we used it to reproduce the effects of the 1980’s Azores earthquake (January 1, 1980) in several islands, with different possible local site conditions. In those places, the response spectra are presented and compared with the buildings damage observed.
Resumo:
We estimated the detonation depth and net explosive weight for a very shallow underwater explosion using cutoff frequencies and spectral analysis. With detonation depth and a bubble pulse the net explosive weight for a shallow underwater explosion could simply be determined. The ray trace modeling confirms the detonation depth as a source of the hydroacoustic wave propagation in a shallow channel. We found cutoff frequencies of the reflection off the ocean bottom to be 8.5 Hz, 25 Hz, and 43 Hz while the cutoff frequency of the reflection off the free surface to be 45 Hz including 1.01 Hz for the bubble pulse, and also found the cutoff frequency of surface reflection to well fit the ray-trace modeling. We also attempted to corroborate our findings using a 3D bubble shape modeling and boundary element method. Our findings led us to the net explosive weight of the underwater explosion offshore of Baengnyeong-do for the ROKS Cheonan sinking to be approximately 136 kg TNT at a depth of about 8 m within an ocean depth of around 44 m. © 2015 Elsevier B.V.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007