8 resultados para Southern water vole
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese dout., Ciências e Tecnologias das Pescas, Universidade do Algarve, 2007
Resumo:
Deep water sharks are commonly caught as by-catch of longlines targeting bony fishes and trawlers targeting crustaceans in deep water off the southern Portuguese coast. Due to low or no commercial value, these species are most of the times discarded at sea, with only the larger specimens of some species commercialized at very low prices. In this study we present size distributions, maturity distributions, and sex ratios of 2,138 specimens belonging to four different species, namely the lantern sharks Etmopterus pusillus and Etmopterus spinax and the catsharks Galeus melastomus and Galeus atlanticus, caught with these two gears. Trawls generally caught smaller-sized specimens, in a wider length range than longlines. Trawls caught mostly immature specimens of all species, namely 83.7% immature of E. pusillus, 84.3% of E. spinax, 89.5% of G. melastomus, and 95.5% of G. atlanticus, while longlines caught mostly immature E. pusillus (69.2%) and G. melastomus (78.6%) and mostly mature E. spinax (88.2%) and G. atlanticus (87.2%). Trawls tended to catch more males than females of all species except E. spinax, while longlines caught more females than males of E. spinax and G. melastomus and more males than females of the other two species. The main conclusion of this work is that trawls are catching smaller-sized and mostly immature specimens when compared to longlines, meaning that they are probably having a more detrimental effect on these shark populations. The data presented here have significant implications for the conservation of these shark populations since sizes, sexes, and the immature and mature components of the populations are being affected differently by these two fishing gears.
Resumo:
Dissertação mest., Estudos Marinhos e Costeiros, Universidade do Algarve, 2007
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009
Resumo:
This work summarises the Intercalibration Exercise (IE) required for the Common Implementation Strategy of the Water Framework Directive (WFD; 2000/60/EC) that was carried out in Portugal, and applied to a coastal region. The WFD aims to achieve good ec ological status for all waters in the European Community by 2015. The Ecological Status of a water body is determined us ing a range of Hydromorphological and Physico-Chemical Quality Elements as well Biological Quality Elements (BQE ). In coastal waters, the Biological Elements include Phytoplankton, Other Aquatic Flora and Benthic Inverteb rate Fauna. Good cooperation with the other Member States allowed the IE to proceed without a complete da ta set, and Portugal was ab le to intercalibrate and harmonise methods within the North Ea st Atlantic Geographica l Intercalibration Group for most of the BQE. The appropriate metrics and corre sponding methods were agreed under the framework of the RECITAL (Reference Conditions and Intercalibra tion) project, funded by the Port uguese Water Institu te, INAG. Some preliminary sampling was undertaken, but not su fficient to establish the Reference Conditions. The study area was a coastal lagoon in the southern part of Portugal. The focus was on the Phytoplankton Quality Element, but other BQE were also taken into account. Two sampli ng stations in Ria Formosa coastal lagoon were considered in this exercise: Ramalhete a nd Ponte. The metrics adopted by the Intercalibration Exercise groups were applied enabli ng the classification for the two sta tions of Good/High Status for the majority of the BQE parameters.
Resumo:
We write to comment on the recently published paper “Defining phytoplankton class boundaries in Portuguese transitional waters: an evaluation of the ecological quality status according to the Water Framework Directive” (Brito et al., 2012). This paper presents an integrated methodology to analyse the ecological quality status of several Portuguese transitional waters, using phytoplanktonrelated metrics. One of the systems analysed, the Guadiana estuary in southern Portugal, is considered the most problematic estuary, with its upstream water bodies classified as Poor in terms of ecological status. We strongly disagree with this conclusion and we would like to raise awareness to some methodological constraints that, in our opinion, are the basis of such deceptive conclusions and should therefore not be neglected when using phytoplankton to assess the ecological status of natural waters.
Resumo:
This work aimed to assess how potassium (K) and nitrogen (N) fertilisation may affect the use of precipitation in terms of vegetative and flowering response of 15-year-old carob trees during a 3-year experiment. A field trial was conducted in 1997, 1998 and 1999 in Algarve (Southern Portugal) in a calcareous soil. Four fertilisation treatments were tested: no fertiliser (control); 0.8 kg N/tree (N treatment); 1 kg K 2 O/tree (K treatment) and 0.8 kg N/tree plus 1 kg K 2 O/tree (NK treatment). No irrigation was applied during the experimental period. Branch length increments were measured every month throughout the growing season and inflorescence number was registered once per year. There was a strong seasonal effect on vegetative growth, since low levels of precipitation (115 mm) during October 1998–March 1999 suppressed the increment in branch length. N supplied to the trees (N and NK treatments) tended to increase water use indices in terms of vegetative growth. No response to K alone was observed in trees fertilised only with K. The number of inflorescences increased throughout the experimental period, particularly for N and NK treatments, and a reduction of the precipitation amount during April, May and June, may also enhance flowering. This knowledge could be important when making decisions concerning fertilisation under dry conditions. The results reported here indicate that tree growth (expressed as the branch growth) and flower production under dry-farming conditions, may be achieved by applying 0.8 kg of N (as ammonium nitrate) per tree during the growing season. However, N uptake and use depends on soil water availability.
Resumo:
Tese de doutoramento, Ciências e Tecnologias do Ambiente, Escola Superior de Saúde, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015