9 resultados para Saline water conversion plants
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Monitoring of coastal and estuarine water quality has been traditionally performed by sampling with subsequent laboratory analysis. This has the disadvantages of low spatial and temporal resolution and high cost. In the last decades two alternative techniques have emerged to overcome this drawback: profiling and remote sensing. Profiling using multi-parameter sensors is now in a commercial stage. It can be used, tied to a boat, to obtain a quick “picture” of the system. The spatial resolution thus increases from single points to a line coincident with the boat track. The temporal resolution however remains unchanged since campaigns and resources involved are basically the same. The need for laboratory analysis was reduced but not eliminated because parameters like nutrients, microbiology or metals are still difficult to obtain with sensors and validation measurements are still needed. In the last years the improvement in satellite resolution has enabled its use for coastal and estuarine water monitoring. Although spatial coverage and resolution of satellite images in the present is already suitable to coastal and estuarine monitoring, temporal resolution is naturally limited to satellite passages and cloud cover. With this panorama the best approach to water monitoring is to integrate and combine data from all these sources. The natural tools to perform this integration are numerical models. Models benefit from the different sources of data to obtain a better calibration. After calibration they can be used to extend spatially and temporally the methods resolution. In Algarve (South of Portugal) a monitoring effort using this approach is being undertaken. The monitoring effort comprises five different locations including coastal waters, estuaries and coastal lagoons. The objective is to establish the base line situation to evaluate the impact of Waste Water Treatment Plants design and retrofitting. The field campaigns include monthly synoptic profiling, using an YSI 6600 multi-parameter system, laboratory analysis and fixed stations. The remote sensing uses ENVISAT\MERIS Level 2 Full Resolution data. This data is combined and used with the MOHID modelling system to obtain an integrate description of the systems. The results show the limitations of each method and the ability of the modelling system to integrate the results and to produce a comprehensive picture of the system.
Resumo:
Nitrate and urban waste water directives have raised the need for a better understanding of coastal systems in European Union. The incorrect application of these directives can lead to important ecological or social penalties. In the paper this problem is addressed to Ria Formosa Coastal Lagoon. Ria Formosa hosts a Natural Park, important ports of the southern Portuguese coast and significant bivalve aquaculture activity. Four major urban waste water treatment plants discharging in the lagoon are considered in this study. Its treatment level must be selected, based on detailed information from a monitoring program and on a good knowledge of the processes determining the fate of the material discharged in the lagoon. In this paper the results of a monitoring program and simulations using a coupled hydrodynamic and water quality / ecological model, MOHID, are used to characterise the system and to understand the processes in Ria Formosa. It is shown that the water residence time in most of the lagoon is quite low, of the order of days, but it can be larger in the upper parts of the channels where land generated water is discharged. The main supply of nutrients to the lagoon comes from the open sea rather than from the urban discharges. For this reason the characteristics and behaviour of the general lagoon contrasts with the behaviour of the upper reaches of the channels where the influence of the waste water treatment plants are high. In this system the bottom mineralization was found to be an important mechanism, and the inclusion of that process in the model was essential to obtain good results.
Resumo:
A Waste Water monitoring program aiming to help decision making is presented. The program includes traditional and inboard sensor sampling, hydrodynamic and water quality modeling and a GIS based database to help the decision making of manager authorities. The focus is in the quality of waters receiving discharges from Waste Water Treatment Plants. Data was used to feed model simulations and produce hydrodynamic, effluent dispersion and ecological results. The system was then used to run different scenarios of discharge flow, concentration and location. The results enable to access the current water quality state of the lagoon and are being used as a decision making tool by the waste water managers in the evaluation phase of the treatment plant project to decide the location and the level of treatment of the discharge.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
More than 3000 types of active pharmaceutical ingredients (APIs) are applied in Human and veterinary medicine practice. These compounds are considered an emergent class of environmental contaminants with the ability to cause damage and unexpected effects to aquatic organisms, namely in species of high commercial value. APIs are ubiquitous in the environment being frequently detected in influents and effluents of waste water treatment plants (WWTPs), surface waters and more distressingly in the public tap water in concentrations ranging from ng to μg.L-1. Considering these premises, the present thesis focused on APIs detection in the Arade river water, the impact of summer period in APIs’ concentration alterations applying the passive sampler device, POCIS (polar organic compound integrative sampler), as well as, the assessment of the effects caused by non-steroidal anti-inflammatory drugs (NSAID) ibuprofen (IBU) and diclofenac (DCF) and antidepressant selective serotonin reuptake inhibitor (SSRI) fluoxetine as single and mixture exposures along with a classical contaminant copper (Cu) on a non-target species, mussel Mytilus galloprovincialis. For this purpose, a multibiomarker approach was applied namely including biomarkers of oxidative stress (antioxidant enzymes activities of superoxide dismutase – SOD, catalase – CAT, glutathione reductase – GR and Phase II glutathione-S-transferase), damage - lipid peroxidation (LPO), neurotoxic effects (through the activity of acetylcholinesterase enzyme - AChE) and endocrine disruption (through vitellogenin-like proteins measurement applying the indirect method of alkali-labile phosphate - ALP) after exposure of mussel species’ to selected APIs at environmental relevant concentrations. The main results highlighted the occurrence of 19 APIs in the river Arade from several distinct therapeutic classes. Stimulant caffeine, antiasthmatic theophylline, NSAID ibuprofen and analgesic paracetamol presented the highest concentrations. Summer impact was inconclusive due to each API transient concentration in each month. The multibiomarker results revealed distinct responses towards each selected API (as single exposure or as mixtures) that were tissue and time dependent. Several multistressor interactions were proposed for each biomarker. The results also revealed APIs potential to induce oxidative stress, LPO, neurotoxicity and endocrine disruption even at extremely low concentrations on a species extremely vulnerable to APIs presence highlighting the urgency on the development of methodologies able to prevent its entrance in the aquatic environment.
Resumo:
Dissertação mest., Estudos Marinhos e Costeiros, Universidade do Algarve, 2007
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007
Resumo:
Dissertação mest., Gestão da água e da costa, Universidade do Algarve, 2007
Resumo:
The physiological response of plants to water deficits are known to vary according to the conditions of application of drought stress and the rate of development of leaf water deficits. At the whole plant level the effect of the water shess is usually perceived as a decrease in photosynthesis and growth, and is associated with alterations in C and N metabolism (McDonald and Davies, 1996). The decrease in water potential affects transpiration and hence xylem transport of nitrate or reduced N into growing regions. The response of the photo-synthetic apparatus either to water stress or rehydration seems to be dependent "on leaf age (O'Neill, 1983; Wolfe et al., 1988). Degradation of both thylakoid and stromal N-containing compounds can occur in response to water stress, recovery from which may pequire more than a week (Chaves, 1991).