3 resultados para STEADY-STATE VOLTAMMOGRAMS
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
This paper presents the development and implementation of a digital simulation model of a threephase, three-leg, three-winding power transformer. The proposed model, implemented in MATLAB environment, is based on the simultaneous analysis of both magnetic and electric lumped-parameters equivalents circuits, and it is intended to study its adequacy to incorporate, at a later stage, the influences of the occurrence of windings interturn short-circuit faults. Both simulation and laboratory tests results, obtained so far, for a three-phase, 6 kVA transformer, demonstrate the adequacy of the model under normal operating conditions.
Resumo:
A lability criterion is developed for dynamic metal binding by colloidal ligands with convective diffusion as the dominant mode of mass transport. Scanned stripping chronopotentiometric measurements of Pb(II) and Cd(II) binding by carboxylated latex core-shell particles were in good agreement with the predicted values. The dynamic features of metal ion binding by these particles illustrate that the conventional approach of assuming a smeared-out homogeneous ligand distribution overestimates the lability of a colloidal ligand system. Due to the nature of the spatial distribution of the binding sites, the change in lability of a metal species with changing ligand concentration depends on whether the ligand concentration is varied via manipulation of the pH (degree of protonation) or via the particle concentration. In the former case the local ligand density varies, whereas in the latter case it is constant. This feature provides a useful diagnostic tool for the presence of geometrically constrained binding sites.
Resumo:
This work describes the electrochemical methodology for the determination of the Donnan potential from diffusion-limited steady-state voltammograms of acrylamide gels. The technique is based upon the measurement of gel–sol systems that have reached Donnan equilibrium and contain Cd2+ as a probe ion. Au-amalgam microelectrodes are used to measure the Cd concentration in the gel phase relative to the solution phase, thus permitting comparison of the Cd voltammograms obtained in both phases. This approach yields two independent measures of the Donnan potential resulting from (i) the potential shift relative to the reference electrode, and (ii) the enhancement of the Cd2+ wave. Two suites of acrylamide gels containing 0.2% and 0.5% Na-acrylate were studied as a function of ionic strength by varying [NaNO3] and maintaining a constant concentration of the electroactive probe ion, [Cd2+] = 1 · 10 5 mol/L in the equilibrating solutions. Independent model predictions of the Donnan potential as a function of ionic strength that consider the effects of differential swelling on the charge density, the influence of a mixed electrolyte on the potential developed in the gel at the limit of low ionic strength and the effects of incomplete dissociation of the carboxylic functional groups were in agreement with the Donnan potentials independently measured by the twofold steady-state voltammetric approach.