7 resultados para SPECIES DISTRIBUTION MODELS
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
European-wide conservation policies are based on the identification of priority habitats. However, research on conservation biogeography often relies on the results and projections of species distribution models to assess species' vulnerability to global change. We assess whether the distribution and structure of threatened communities can be predicted by the suitability of the environmental conditions for their indicator species. We present some preliminary results elucidating if using species distribution models of indicator species at a regional scale is a valid approach to predict these endangered communities. Dune plant assemblages, affected by severe conditions, are excellent models for studying possible interactions among their integrating species and the environment. We use data from an extensive survey of xerophytic inland sand dune scrub communities from Portugal, one of the most threatened habitat types of Europe. We identify indicator shrub species of different types of communities, model their geographical response to the environment, and evaluate whether the output of these niche models are able to predict the distribution of each type of community in a different region.
Resumo:
Inland sand dune systems are amongst the most threatened habitat types of Europe. Affected by severe conditions, these habitats present distinct community compositions, which makes them excellent for studying possible interactions among their integrating species and the environment. We focus on understanding the distribution and cooccurrence of the species from dune plant assemblages as a key step for the adequate protection of these habitats. Using data from an extensive survey we identified the shrub species that could be considered indicators of the different xerophytic scrub dune communities in South West Portugal. Then, we modelled the responses of these species to the environmental conditions using Ecological Niche Factor Analysis. We present some preliminary results elucidating whether using species distribution models of indicator species at a regional scale is a valid approach to predict the distribution of the different types of communities inhabiting these endangered habitats.
Resumo:
Marine protected areas (MPAs) are today's most important tools for the spatial management and conservation of marine species. Yet, the true protection that they provide to individual fish is unknown, leading to uncertainty associated with MPA effectiveness. In this study, conducted in a recently established coastal MPA in Portugal, we combined the results of individual home range estimation and population distribution models for 3 species of commercial importance and contrasting life histories to infer (1) the size of suitable areas where they would be fully protected and (2) the vulnerability to fishing mortality of each species. Results show that the relationship between MPA size and effective protection is strongly modulated by both the species' home range and the distribution of suitable habitat inside and outside the MPA. This approach provides a better insight into the true potential of MPAs in effectively protecting marine species, since it can reveal the size and location of the areas where protection is most effective and a clear, quantitative estimation of the vulnerability to fishing throughout an entire MPA.
Resumo:
There is still much discussion on the most appropriate location, size and shape of marine protected areas (MPAs). These three factors were analyzed for a small coastal MPA, the Luiz Saldanha Marine Park (LSMP), for which a very limited amount of local ecological information was available when implemented in 1998. Marxan was used to provide a number of near-optimal solutions considering different levels of protection for the various conservation features and different costs. These solutions were compared with the existing no-take area of the LSMP. Information on 11 habitat types and distribution models for 3 of the most important species for the local artisanal fisheries was considered. The human activities with the highest economic and ecological impact in the study area (commercial and recreational fishing and scuba diving) were used as costs. The results show that the existing no-take area is actually located in the best area. However, the no-take area offers limited protection to vagile fish and covers a very small proportion of some of the available habitats. An increase in the conservation targets led to an increase in the number of no-take areas. The comparative framework used in this study can be applied elsewhere, providing relevant information to local stakeholders and managers in order to proceed with adaptive management. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We studied the genetic structure of the sea cucumber Holothuria (Roweothuria) polii (Delle Chiaje 1823) by analysing the mitochondrial DNA variation in two fragments of cytochrome oxidase I (COI) and 16S genes. Individuals were collected in seven locations along the Mediterranean Sea, which cover a wide range of the species distribution. We found high haplotype diversity for COI and moderate diversity for 16S, and low nucleotide diversity for both genes. Our results for the COI gene showed many recent and exclusive haplotypes with few mutational changes, suggesting recent or ongoing population expansion. The Western and Eastern Mediterranean populations exhibited slight but significant genetic differentiation (COI gene) with higher genetic diversity in the East. The most ancient haplotype was not present in the westernmost sampling location (SE Spain). The oldest expansion time was observed in Turkey, corresponding to mid-Pleistocene. Turkey had also the highest genetic diversity (number of total and exclusive haplotypes, polymorphisms, haplotype and nucleotide diversity). This suggests that this region could be the origin of the subsequent colonizations through the Mediterranean Sea, a hypothesis that should be assessed with nuclear markers in future research.
Resumo:
Understanding the factors that affect seagrass meadows encompassing their entire range of distribution is challenging yet important for their conservation. We model the environmental niche of Cymodocea nodosa using a combination of environmental variables and landscape metrics to examine factors defining its distribution and find suitable habitats for the species. The most relevant environmental variables defining the distribution of C. nodosa were sea surface temperature (SST) and salinity. We found suitable habitats at SST from 5.8 ºC to 26.4 ºC and salinity ranging from 17.5 to 39.3. Optimal values of mean winter wave height ranged between 1.2 m and 1.5 m, while waves higher than 2.5 m seemed to limit the presence of the species. The influence of nutrients and pH, despite having weight on the models, was not so clear in terms of ranges that confine the distribution of the species. Landscape metrics able to capture variation in the coastline enhanced significantly the accuracy of the models, despite the limitations caused by the scale of the study. By contrasting predictive approaches, we defined the variables affecting the distributional areas that seem unsuitable for C. nodosa as well as those suitable habitats not occupied by the species. These findings are encouraging for its use in future studies on climate-related marine range shifts and meadow restoration projects of these fragile ecosystems.
Resumo:
Dependence of some species on landscape structure has been proved in numerous studies. So far, however, little progress has been made in the integration of landscape metrics in the prediction of species associated with coastal features. Specific landscape metrics were tested as predictors of coastal shape using three coastal features of the Iberian Peninsula (beaches, capes and gulfs) at different scales. We used the landscape metrics in combination with environmental variables to model the niche and find suitable habitats for a seagrass species (Cymodocea nodosa) throughout its entire range of distribution. Landscape metrics able to capture variation in the coastline enhanced significantly the accuracy of the models, despite the limitations caused by the scale of the study. We provided the first global model of the factors that can be shaping the environmental niche and distribution of C. nodosa throughout its range. Sea surface temperature and salinity were the most relevant variables. We identified areas that seem unsuitable for C. nodosa as well as those suitable habitats not occupied by the species. We also present some preliminary results of testing historical biogeographical hypotheses derived from distribution predictions under Last Glacial Maximum conditions and genetic diversity data.