3 resultados para Ryanodine Receptors

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The migration of the hypophysiotropic GnRH (GnRH-I) neurons during early development is a crucial step in establishing a normally functioning reproductive system in all vertebrates. These neurons derive from progenitor cells in the olfactory placode and subsequently migrate to their final position in the ventral forebrain, where they mediate hypophysiotropic control over Lh. We use zebrafish as a model to investigate the path and the factors that mediate the migration of the GnRH-I neurons during early development. A transgenic line of zebrafish, in which GnRH- I neurons specifically express a reporter gene (GFP) has been developed in our lab. This was achieved by integrating a GnRH-I promoter/GFP reporter transgene into the zebrafish genome. The resulting transgenic line allows us to track the route of the GnRH-I neuronal migration in real time and in vivo. We have used this line to conduct time lapse imaging to ascertain the exact migrational path and the final position in the ventral forebrain of the GnRH-I neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole animal studies have indicated that Ca2+ uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using aminoterminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of 125I-(1–35tyr) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (KD=2.59 nM; Bmax=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1–34) PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The aminoterminal peptides (2–34)PTHrP, (3–34)PTHrP and (7–34) PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1–34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca2+ uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.