9 resultados para Reliability models in discrete time

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This text describes a real data acquisition and identification system implemented in a soilless greenhouse located at the University of Algarve (south of Portugal). Using the Real Time Workshop, Simulink, Matlab and the C programming language a system was developed to perform real-time data acquisition from a set of sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time data acquisition and identification system implemented in a soil-less greenhouse located in the south of Portugal is described. The system performs real-time data acquisition from a set of sensors connected to a data logger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic information systems (GIS) are now widely applied in coastal resource management. Their ability to organise and interface information from a large range of public and private data sources, and their ability to combine this information, using management criteria, to develop a comprehensive picture of the system explains the success of GIS in this area. The use of numerical models as a tool to improve coastal management is also widespread. Less usual is a GIS-based management to ol implementing a comprehensive management model and integrating a numerical modelling system into itself. In this paper such a methodology is proposed. A GIS-based management tool based on the DPSIR model is presented. An overview of the MOHID numerical modelling system is given and the method of integrating this model in the management tool is described. This system is applied to the Sado Estuary (Portugal). Some preliminary results of the integration are presented, demonstrating the capabilities of the management system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time parameter estimator for the climate discrete-time dynamic models of a greenhouse located at the North of Portugal are presented. The experiments showed that the second order models identified for the air temperature and humidity achieve a close agreement between simulated and experimantal data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a greenhouse located at UTAD-University, the methods used to estimate in real-time the parameters of the inside air temperature model will be described. The structure and the parameters of the climate discrete-time dynamic model were previously identified using data acquired during two different periods of the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper climate discrete-time dynamic models for the inside air temperature of a soilless greenhouse are identified, using data acquired during two different periods of the year. These models employ data from air temperature and relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper climate discrete-time dynamic models for the inside air temperature of two different greenhouses are identified, using data acquired during two different periods of the year. These models employ data from air temperature and relative humidity (both outside and inside the greenhouse), solar radiation, wind speed, and control inputs (ventialtion, etc.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an improved, biologically inspired and multiscale keypoint operator. Models of single- and double-stopped hypercomplex cells in area V1 of the mammalian visual cortex are used to detect stable points of high complexity at multiple scales. Keypoints represent line and edge crossings, junctions and terminations at fine scales, and blobs at coarse scales. They are detected by applying first and second derivatives to responses of complex cells in combination with two inhibition schemes to suppress responses along lines and edges. A number of optimisations make our new algorithm much faster than previous biologically inspired models, achieving real-time performance on modern GPUs and competitive speeds on CPUs. In this paper we show that the keypoints exhibit state-of-the-art repeatability in standardised benchmarks, often yielding best-in-class performance. This makes them interesting both in biological models and as a useful detector in practice. We also show that keypoints can be used as a data selection step, significantly reducing the complexity in state-of-the-art object categorisation. (C) 2014 Elsevier B.V. All rights reserved.