2 resultados para Regional population dynamics
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Environmental heterogeneity in coastal lagoons is expected to facilitate local adaptation in response to different ecological conditions, causing significant genetic structuring within lagoon populations at a small scale and also differentiation between lagoons. However, these patterns and processes of genetic structuring are still poorly understood. The aims of our study were (1) to seek genetic structure at a small scale in Cerastoderma glaucum inside the Mar Menor coastal lagoon using a mitochondrial DNA marker (COI) that has previously detected genetic differentiation inside the lagoon in other species and (2) to evaluate the influence of extreme environmental conditions and habitat discontinuity on its genetic composition. The results indicate high levels of haplotype diversity and low values of nucleotide diversity. COI data provide evidence of significant population differentiation among some localities within the lagoon. Limited gene flow and unstable population dynamics (i.e. fluctuations in population size caused by local extinction and recolonization), probably due to the high environmental heterogeneity, could generate the small-scale genetic divergence detected between populations within the lagoon.
Resumo:
The common two-banded sea bream (Diplodus vulgaris) is an important fish in the marine ecosystems of the NW Atlantic and Mediterranean. In southern Portugal it is a major fishery resource being targeted mainly by the artisanal fleets. Although there is some knowledge of the age, growth and reproductive biology of the species, information about its population structure is scarce and somewhat limited to the Mediterranean Sea. In this study the otolith elemental signatures of 90 specimens of D. vulgaris of the same age group (2+ years) and cohort collected from the important fishery regions of SW Portugal (Sesimbra, Sagres and Faro) have been analysed by inductively coupled plasma mass spectrometry (ICP-MS). Two different methodologies have been applied: solution based analysis of the whole otoliths; representative of the entire life-history prior to capture, and laser ablation analysis of otolith cores; representative of the larval and early post-settlement phase. Whole otolith comparisons utilised Sr/Ca, Ba/Ca, Mn/Ca, Li/Ca and Ni/Ca to demonstrate regional population structure. Classification accuracy rates from linear discriminant function analyses (LDFA) of whole otolith chemistry data were high for each region; Faro - 93%, Sagres - 90% and Sesimbra - 80%. Comparison of the otolith core chemistry utilised Sr/Ca, Ba/Ca, Mn/Ca and Mg/Ca and Zn/Ca. LDFA for the otolith core chemistry also achieved accurate classification for samples from Sesimbra (73%), but there was high overlap of otolith chemistry between samples from Faro and Sagres (47 and 43% classification accuracy respectively). The whole otolith results suggest that D. vulgaris are resident in the regional fishing areas during the juvenile phase. Both the core and whole otolith chemistry data supported separation of the Sesimbra fishery region from the more southern and closely associated Faro and Sagres regions for management purposes. However, while the whole otolith data indicated that the populations at Faro and Sagres likely remained separated in the juvenile stage, the otolith core chemistry data was inconclusive as to whether recruitment to these two areas was derived, or not, from different spawning areas.