3 resultados para Railroad crossings
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
End-stopped cells in cortical area V1, which combine out- puts of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representa- tion, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show that this representation provides important information for Focus-of-Attention (FoA) and object detection. In particular, we show that hierarchically-structured saliency maps for FoA can be obtained, and that combinations over scales in conjunction with spatial symmetries can lead to face detection through grouping operators that deal with keypoints at the eyes, nose and mouth, especially when non-classical receptive field inhibition is employed. Al- though a face detector can be based on feedforward and feedback loops within area V1, such an operator must be embedded into dorsal and ventral data streams to and from higher areas for obtaining translation-, rotation- and scale-invariant face (object) detection.
Resumo:
The primary visual cortex employs simple, complex and end-stopped cells to create a scale space of 1D singularities (lines and edges) and of 2D singularities (line and edge junctions and crossings called keypoints). In this paper we show first results of a biological model which attributes information of the local image structure to keypoints at all scales, ie junction type (L, T, +) and main line/edge orientations. Keypoint annotation in combination with coarse to fine scale processing facilitates various processes, such as image matching (stereo and optical flow), object segregation and object tracking.
Resumo:
We present an improved, biologically inspired and multiscale keypoint operator. Models of single- and double-stopped hypercomplex cells in area V1 of the mammalian visual cortex are used to detect stable points of high complexity at multiple scales. Keypoints represent line and edge crossings, junctions and terminations at fine scales, and blobs at coarse scales. They are detected by applying first and second derivatives to responses of complex cells in combination with two inhibition schemes to suppress responses along lines and edges. A number of optimisations make our new algorithm much faster than previous biologically inspired models, achieving real-time performance on modern GPUs and competitive speeds on CPUs. In this paper we show that the keypoints exhibit state-of-the-art repeatability in standardised benchmarks, often yielding best-in-class performance. This makes them interesting both in biological models and as a useful detector in practice. We also show that keypoints can be used as a data selection step, significantly reducing the complexity in state-of-the-art object categorisation. (C) 2014 Elsevier B.V. All rights reserved.