4 resultados para Piezoelectric elements
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators.The finite element model is a single layer trinaguular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element elemenet layer or patch. An optimization of the patches position is perfomed to maximize the piezoelectric actuators efficiency as well as,the electric potential distribution is serach to reach the specified strusctura transverse displacement distribution is search to reach the specified structures trsnsverse displacement distribution (shape control). A gradient based algorithm is used for this purpose.Results are presented and discussed.
Resumo:
This paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.
Resumo:
Composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the offer of potential benefits in a wide range of engineering applications such as vibration and noise supression, shape control and precisition positioning. This paper presents a finit element formulation based on classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezsoelectric elementlayer or patch, witch are surface bonded on the laminate. An optimization of the patches position is performed to maximize the piezoelectric actuators efficiency as well as, the electric potential distribuition is search to reach the specified structure transverse displacement distribuition (shape control). A gradient based algorithm is used for this purpose. The model is applied in the optimization of illustrative laminated plate cases, and the results are presented and discussed.
Resumo:
This work summarises the Intercalibration Exercise (IE) required for the Common Implementation Strategy of the Water Framework Directive (WFD; 2000/60/EC) that was carried out in Portugal, and applied to a coastal region. The WFD aims to achieve good ec ological status for all waters in the European Community by 2015. The Ecological Status of a water body is determined us ing a range of Hydromorphological and Physico-Chemical Quality Elements as well Biological Quality Elements (BQE ). In coastal waters, the Biological Elements include Phytoplankton, Other Aquatic Flora and Benthic Inverteb rate Fauna. Good cooperation with the other Member States allowed the IE to proceed without a complete da ta set, and Portugal was ab le to intercalibrate and harmonise methods within the North Ea st Atlantic Geographica l Intercalibration Group for most of the BQE. The appropriate metrics and corre sponding methods were agreed under the framework of the RECITAL (Reference Conditions and Intercalibra tion) project, funded by the Port uguese Water Institu te, INAG. Some preliminary sampling was undertaken, but not su fficient to establish the Reference Conditions. The study area was a coastal lagoon in the southern part of Portugal. The focus was on the Phytoplankton Quality Element, but other BQE were also taken into account. Two sampli ng stations in Ria Formosa coastal lagoon were considered in this exercise: Ramalhete a nd Ponte. The metrics adopted by the Intercalibration Exercise groups were applied enabli ng the classification for the two sta tions of Good/High Status for the majority of the BQE parameters.