2 resultados para Particulate Matter
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Dissolved oxygen (DO) is one of the most important environmental variables of water quality, especially for marine life. Consequently, oxygen is one of the Chemical Quality Elements required for the implementation of European Union Water Framework Directive. This study uses the example of the Ria Formosa, a meso-tidal lagoon on the south coast of Portugal to demonstrate how monitoring of water quality for coastal waters must be well designed to identify symptoms of episodic hypoxia. New data from the western end of the Ria Formosa were compared to values in a database of historical data and in the published literature to identify long-term trends. The dissolved oxygen concentration values in the database and in the literature were generally higher than those found in this study, where episodic hypoxia was observed during the summer. Analysis of the database showed that the discrepancy was probably related with the time and the sites where the samples had been collected, rather than a long-term trend. The most problematic situations were within the inner lagoon near the city of Faro, where episodic hypoxia (<2 mg dm3 DO) occurred regularly in the early morning. These results emphasise the need for a balanced sampling strategy for oxygen monitoring which includes all periods of the day and night, as well as a representative range of sites throughout the lagoon. Such a strategy would provide adequate data to apply management measures to reduce the risk of more persistent hypoxia that would impact on the ecological, important natural resource. economic and leisure uses of this important natural resource.
Resumo:
The residence time has long been used as a classification parameter for estuaries and other semi- enclosed water bodies. It aims to quantify the time water remains inside the estuary, being used as an indicator both for pollution assessment and for ecological processes. Estuaries with a short residence time will export nutrients from upstream sources more rapidly then estuaries with longer residence time. On the other hand the residence time determines if micro-algae can stay long enough to generate a bloom. As a consequence, estuaries with very short residence time are expected to have much lower algae blooms, then estuaries with longer residence time. In addition, estuaries with residence times shorter than the doubling time of algae cells will inhibit formation of algae blooms (EPA, 2001). The residence time is also an important issue for processes taking place in the sediment. The fluxes of particulate matter and associated adsorbed species from the water column to the sediment depends of the particle’s vertical velocity, water depth and residence time. This is particularly important for the fine fractions with lower sinking velocities. The question is how to compute the residence time and how does it depend on the computation method adopted.