4 resultados para Parathyroid Glands
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The production and puriWcation of gilthead sea bream recombinant parathyroid hormone related protein [sbPTHrP(1–125)] using an Escherichia coli system and one step puriWcation process with continuous elution gel electrophoresis is reported. The cDNA encoding sbPTHrP(1–125) was cloned into a prokaryotic expression vector pET-11a. The recombinant plasmid was used to transfect E. coli BL21(DE3) pLysS and sbPTHrP(1–125) synthesis was induced by addition of 1mM isopropyl- -D-thiogalactopyranoside. The rapid one step isolation method gave pure sbPTHrP(1–125) as judged by SDS–PAGE and yielded up to 40mg/L of culture medium (3.3mg protein/g of bacteria). The bioactivity of recombinant sbPTHrP(1–125) assessed using an in vitro scale bioassay was found to be equipotent to PTHrP(1–34) in stimulating cAMP accumulation. Assessment of the immunological reactivity of the isolated protein by Western blot revealed it cross-reacts with antisera speciWc for the N-terminal and C-terminal region of PTHrP. In a radioimmunoassay speciWc for piscine N-terminal (1–34 aa) PTHrP, the recombinant sbPTHrP(1–125) was equipotent with PTHrP(1–34) in displacing labelled 125I-PTHrP(1–36) PTHrP from the antisera. The availability of recombinant sbPTHrP will allow the development of region speciWc assays and studies aimed at deWning post-secretory processing of this protein and its biological activity in Wsh.
Resumo:
In this study we describe the isolation and characterisation of the parathyroid hormone-related protein (PTHrP) gene from the teleost Fugu rubripes. The gene has a relatively simple structure, compared with tetrapod PTHrP genes, composed of three exons and two introns, encompassing 2.25 kb of genomic DNA. The gene encodes a protein of 163 amino acids, with a putative signal peptide of 37 amino acids and a mature peptide of 126 amino acids. The overall homology with known tetrapod PTHrP proteins is low (36%), with a novel sequence inserted between positions 38 and 65, the absence of the conserved pentapeptide (TRSAW) and shortened C-terminal domain. The N-terminus shows greater conservation (62%), suggesting that it may have a hypercalcaemic function similar to that of tetrapod PTHrP. In situ localisation and RT–PCR have demonstrated the presence of PTHrP in a wide range of tissues with varying levels of expression. Sequence scanning of overlapping cosmids has identified three additional genes, TMPO, LDHB and KCNA1, which map to human chromosome 12, with the latter two mapping to 12p12-11.2. PTHrP in human also maps to this chromosome 12 sub-region, thus demonstrating conservation of synteny between human and Fugu.
Resumo:
In the peacock blenny, Salaria pavo, a species with courtship sex-role reversal, smaller, younger males mimic the courtship behavior and the nuptial coloration of females in order to get access to nests during spawning and to parasitize egg fertilization from nest-holder males. Later in their life, sneakers transform both morphologically and behaviorally into nest-holder males. In the present paper we investigate the activational role of 11-ketotestosterone (KT), the most potent androgen in most teleost species, to promote the switch between tactics in sneaker males of S. pavo. Sneakers were implanted either with KT or with control (i.e. castor oil) silastic implants. A week after implantation they were subjected to a set of behavioral tests and morphometric measurements. KT treatment promoted the differentiation of secondary sex characters, such as the anal glands, and inhibited the expression of female courtship behavior. KT-treated sneakers also showed a trend toward less frequent display of female nuptial coloration. There was no effect of KT treatment on the expression of typical nest-holder male behavior. Finally, there was no effect of KT treatment on the number or soma size of arginine vasotocin neurons in the preoptic area, which are often associated with the expression of vertebrate sexual behavior. Thus, KT seems to play a key role in mating tactic switching by inhibiting the expression of female courtship behavior and by promoting the development of male displaying traits (e.g. anal glands). The lack of a KT effect on behavior typical of nest-holding males and vasotocinergic preoptic neurons suggests that a longer time frame or other endocrine/social signals are needed for the initiation of these traits in males that are switching tactics.
Resumo:
Whole animal studies have indicated that Ca2+ uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using aminoterminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of 125I-(1–35tyr) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (KD=2.59 nM; Bmax=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1–34) PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The aminoterminal peptides (2–34)PTHrP, (3–34)PTHrP and (7–34) PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1–34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca2+ uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.