2 resultados para PREDICTIVE PERFORMANCE
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Modelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudoabsence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, the models generated obtain better accuracy scores, and over-prediction increases. When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study showsthat ifwe do not have reliable absence data, the method of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions.
Resumo:
This talk addresses the problem of controlling a heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identifed by means of a multi-objective genetic algorithm [1]; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, with a special emphasis on a fast and accurate computation of the PMV indices [2]. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer [3] and winter [4] conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.