4 resultados para Orthogonal frequency division multiplexing (OFDM)

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent remarkable growth in bandwidth of both wired optical and wireless access networks supports a burst of new high bandwidth Internet applications such as: peer-topeer file sharing, cloud storage, on-line gaming, video streaming, etc. Within this scenario, the convergence of fixed and wireless access networks offers significant opportunities for network operators to satisfy user demands, and simultaneously reduce the cost of implementing and running separated wireless and wired networks. The integration of wired and wireless network can be accomplished within several scenarios and at several levels. In this thesis we will focus on converged radio over fiber architectures, particularly on two application scenarios: converged optical 60 GHz wireless networks and wireless overlay backhauling over bidirectional colorless wavelength division multiplexing passive optical networks (WDM-PONs). In the first application scenario, optical 60 GHz signal generation using external modulation of an optical carrier by means of lithium niobate (LiNbO3) Mach- Zehnder modulators (MZM) is considered. The performance of different optical modulation techniques, robust against fiber dispersion is assessed and dispersion mitigation strategies are identified. The study is extended to 60 GHz carriers digitally modulated with data and to systems employing subcarrier multiplexed (SCM) mm-wave channels. In the second application scenario, the performance of WDM-PONs employing reflective semiconductor optical amplifiers (RSOAs), transmitting an overlay orthogonal frequency-division multiplexing (OFDM) wireless signal is assessed analytically and experimentally, with the relevant system impairments being identified. It is demonstrated that the intermodulation due to the beating of the baseband signal and wireless signal at the receiver can seriously impair the wireless channel. Performance degradation of the wireless channel caused by the RSOA gain modulation owing to the downstream baseband data is also assessed, and system design guidelines are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MC-CDMA (MultiCarrier Code Division Multiple Access), currently regarded as a promissing multiple access scheme for broadband communications, is known to combine the advantages of an OFDM-based (Orthogonal Frequency Division Multiplexing), CP-assisted (Cyclic Prefix) block transmission with those of CDMA systems. Recently, it was recognised that DS-CDMA (Direct Sequence) implementations can also take advantage of the beneficts of the CP-assisted block transmission approach, therefore enabling an efficient use of FFT-based (Fast Fourier Transform), chip level FDE (Frequency- Domain Equalisation) techniques. In this paper we consider the use of IB-DFE (Iterative Block Decision Feedback Equalisation) FDE techniques within both CP-assisted MC-CDMA systems with frequency-domain spreading and DS-CDMA systems. Our simulation results show that an IB-DFE receiver with moderate complexity is suitable in both cases, with excellent performances that can be close to the single-code matched filter bound (especially for the CP-assisted DSCDMA alternative), even with full code usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the uplink transmission within CP-assisted (Cyclic Pre¯x) DS-CDMA (Direct Sequence Code Division Multiple Access) systems and we present a frequency-domain MUD (MultiUser Detection) receiver with iterative estimation and compensation of residual frequency errors. The proposed receiver is suitable for broadband wireless systems, with performances that can be close to the single-user MFB (Matched Filter Bound), even for fully loaded systems and/or in the presence of strong interfering signals. The receiver is powerful enough for typical asynchronous scenarios, requiring only a coarse synchronization between users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A DS-CDMA (Direct Sequence-Coded Division Multiple Access) system has maximum spectral efficiency if the system is fully loaded (i.e., the number of users is equal to the spreading factor) and we employ signals with bandwidth equal to the chip rate. However, due to implementation constraints we need to employ signals with higher bandwidth, decreasing the system’s spectral efficiency. In this paper we consider prefixassisted DS-CDMA systems with bandwidth that can be significantly above the chip rate. To allow high spectral efficiency we consider highly overloaded systems where the number of users can be twice the spreading factor or even more. To cope with the strong interference levels we present an iterative frequencydomain receiver that takes full advantage of the total bandwidth of the transmitted signals. Our performance results show that the proposed receiver can have excellent performance, even for highly overloaded systems. Moreover, the overall system performance can be close to the maximum theoretical spectral efficiency, even with transmitted signals that have bandwidth significantly above the chip rate.