5 resultados para Oils and fats.
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Aims: Thymus species are wild species mostly found in the arid lands of Portugal. Possible antimicrobial properties of Thymus essential oils have been investigated. The chemical composition of the essential oils and the antimicrobial activity of Thymus mastichina (L) L. subsp. mastichina , T. camphoratus and T. lotocephalus from different regions of Portugal were analysed. Methods and Results: Hydrodistillation was used to isolate the essential oils and the chemical analyses were performed by gas chromatography (GC) and GC coupled to mass spectrometry. The antimicrobial activity was tested by the disc agar diffusion technique against Candida albicans , Escherichia coli , Listeria monocytogenes , Proteus mirabilis , Salmonella spp. and Staphylococcus aureus . Pure linalool, 1,8-cineole and a mixture (1:1) of these compounds were included. Linalool, 1,8-cineole or linalool/1,8-cineole and linalool/1,8-cineole/linalyl acetate were the major components of the essential oils, depending on the species or sampling place. The essential oils isolated from the Thymus species studied demonstrated antimicrobial activity but the micro-organisms tested had significantly different sensitivities. Conclusions: The antimicrobial activity of essential oils may be related to more than one component. Significance and Impact of the Study: Portuguese endemic species of Thymus can be used for essential oil production for food spoilage control, cosmetics and pharmaceutical use. Further studies will be required to elucidate the cell targets of the essential oil components.
Resumo:
Dissertação de mest., Qualidade em Análises, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2013
Resumo:
Total phenol, hydroxycinnamic acid derivatives, flavone/flavonol and flavanones/dihydroflavonol contents of hydro-alcoholic extracts, obtained by sonication, from the aerial parts of Artemisia campestris L., Anthemis arvensis L., Haloxylon scoparium Pomel, Juniperus phoenicea L., Arbutus unedo L., Cytisus monspessulanus L., Thymus algeriensis Boiss et Reut, Zizyphus lotus L (Desf.) collected in Djebel Amour (Sahara Atlas, Algeria) were quantified by spectrophotometric methods. The chemical composition of the essential oils obtained by hydrodistillation from Artemisia campestris L. and Juniperus phoenicea I aerial parts were also evaluated by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). The antioxidant activity of the extracts and essential oils was assessed measuring the capacity for preventing lipid peroxidation using two lipidic substrates (egg yolk and liposomes), the capacity for scavenging DPPH, ABTS, superoxide anion radicals, hydroxyl radicals and peroxyl radicals. Anti-inflammatory activity was assessed by measuring the capacity for inhibiting lipoxygenase. Reducing power and chelating capacity were also assayed. The results showed different amounts of total phenols depending on the method used: A. campestris extract had the highest levels of total phenols when the measurement was made at lambda = 280 nm, whereas H. scoparium and A. unedo extracts showed the highest levels of total phenols with Folin-Ciocalteau. C. monspessulanus had the highest levels of flavones/flavonols and flavanones/dihydroflavonols. The essential oils of A. campestris and J. phoenicea were mainly constituted by alpha-pinene, beta-pinene and sabinene; and a-pinene, respectively. The methods used for assaying the capacity for preventing lipid peroxidation revealed to be inadequate for extracts due to the great interferences detected. The essential oils were more active than the generality of extracts for scavenging peroxyl radicals and for inhibiting lipoxygenase, whereas A. unedo extract was the most active for scavenging ABTS, DPPH, superoxide anion radicals and it also had the best reducing capacity. In a general way, the great majority of the antioxidant activities correlated well with the phenol content although such correlation was not so clear with the flavonoid content. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
The aquaculture industry aims at replacing significant amounts of marine fish oil by vegetable oils in fish diet. Dietary lipids have been shown to alter the fatty acid composition of bone compartments, which would impact the local production of factors controlling bone formation. Knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is however scarce in fish. Two in vitro bone-derived cell systems developed from seabream (an important species for aquaculture in the Mediterranean region) vertebra, capable of in vitro mineralization and exhibiting prechondrocyte (VSa13) and pre-osteoblast (VSa16) phenotype, were used to assess the effect of certain polyunsaturated fatty acids (PUFAs; arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) on cell proliferation, extracellular matrix (ECM) mineralization and gene expression. While all PUFAs promoted morphological changes in both cell lines, VSa16 cell proliferation appeared to be stimulated by PUFAs in a dose dependent manner until 100M, whereas proliferation of VSa13 cells was impaired at concentrations above 10M. AA, EPA and DHA inhibited VSa13 ECM mineralization, alone and in combination, while VSa16 ECM mineralization was only inhibited by AA and EPA. DHA had the opposite effect, increasing mineralization almost by 2 fold. When EFAs were combined, DHA apparently compensated for the inhibitory effect of AA and EPA. Expression of marker genes for bone and lipid metabolisms has been investigated by qPCR and shown to be regulated in pre-osteoblasts exposed to individual PUFAs. Our results show that PUFAs are effectors of fish bone cell lines, altering cell morphology, proliferation and mineralization when added to culture medium. This work also demonstrates the suitability of our in vitro cell systems to get insights into mineralization-related effects of PUFAs in vivo and to evaluate the replacement of fish oils by vegetable oil sources in fish feeds.
Resumo:
The effect of coating Arbutus unedo fresh fruit with alginate-based edible coatings enriched with the essential oils compounds (EOC) eugenol (Eug) and citral (Cit) was studied. The minimum inhibitory concentrations (MIC) against the main postharvest pathogens were determined for Eug and Cit giving values of 0.10 and 0.15 (w/v), respectively. Twelve formulations of edible coatings were used: sodium alginate (AL) was tested at 1 and 2% (w/v) with incorporation of Eug and Cit at MIC and double MIC or their combination at MIC. Arbutus berries were dipped in those solutions for 2 min, and then stored at 0.5 degrees C. Control consisted of uncoated fruit. On days 0, 14 and 28, samples were taken to perform physicochemical and biochemical analysis [color CIE (L*, h degrees), firmness, soluble solids content (SSC), weight Loss, trolox equivalent antioxidant capacity (TEAC), microbial growth and taste panels]. Results showed that edible coatings of 1% AL were the best to maintain most quality attributes of the commodity through storage at 0.5 degrees C. The incorporation of Cit and Eug into the alginate edible coatings improved the coatings in most cases, AL 1% + Eug 0.20% and AL 1% + Cit 0.15% + Eug 0.10% being those that better preserved sensory and nutritional attributes and reduced microbial spoilage. Thus, these coatings may be useful for improving postharvest quality and storage life of fresh arbutus fruit. (C) 2014 Elsevier B.V. All rights reserved.