4 resultados para Object Memory

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object categorisation is linked to detection, segregation and recognition. In the visual system, these processes are achieved in the ventral \what"and dorsal \where"pathways [3], with bottom-up feature extractions in areas V1, V2, V4 and IT (what) in parallel with top-down attention from PP via MT to V2 and V1 (where). The latter is steered by object templates in memory, i.e. in prefrontal cortex with a what component in PF46v and a where component in PF46d.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are roughly two processing systems: (1) very fast gist vision of entire scenes, completely bottom-up and data driven, and (2) Focus-of-Attention (FoA) with sequential screening of specific image regions and objects. The latter system has to be sequential because unnormalised input objects must be matched against normalised templates of canonical object views stored in memory, which involves dynamic routing of features in the visual pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic feature routine, and saliency maps for Focus-of-Attention.