5 resultados para ONE-LAYER MODEL

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few models can explain Mach bands (Pessoa, 1996 Vision Research 36 3205-3227) . Our own employs multiscale line and edge coding by simple and complex cells. Lines are interpreted by Gaussian functions, edges by bipolar, Gaussian-truncated errorfunctions. Widths of these functions are coupled to the scales of the underlying cells and the amplitudes are determined by their responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lines and edges provide important information for object categorization and recognition. In addition, one brightness model is based on a symbolic interpretation of the cortical multi-scale line/edge representation. In this paper we present an improved scheme for line/edge extraction from simple and complex cells and we illustrate the multi-scale representation. This representation can be used for visual reconstruction, but also for nonphotorealistic rendering. Together with keypoints and a new model of disparity estimation, a 3D wireframe representation of e.g. faces can be obtained in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper is presented an higher-order model for static and free vibration analyses of magneto-electro-elastic plates, wich allows the analysis of thin and thick plates, which allows the analysis of thin and thick plates. The finite element model is a single layer triangular plate/shell element with 24 degrees of fredom for the generalized mechanical displacements. Two degrees on freedom are introduced per each element layer, one corresponding to the electrical potential and the other for magnetic potential. Solutions are obtained for different laminations of the magneto-electro-elastic plate, as well as for the purely elastic plate as a special case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.