4 resultados para New career models

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are developing a frontend that is based on the image representation in the visual cortex and plausible processing schemes. This frontend consists of multiscale line/edge and keypoint (vertex) detection, using models of simple, complex and end-stopped cells. This frontend is being extended by a new disparity model. Assuming that there is no neural inverse tangent operator, we do not exploit Gabor phase information. Instead, we directly use simple cell (Gabor) responses at positions where lines and edges are detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of preference-based measures of health in the measurement of Health Related Quality of Life has become widely used in health economics. Hence, the development of preference-based measures of health has been a major concern for researchers throughout the world. This study aims to model health state preference data using a new preference-based measure of health (the SF- 6D) and to suggest alternative models for predicting health state utilities using fixed and random effects models. It also seeks to investigate the problems found in the SF-6D and to suggest eventual changes to it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a recent approach for PID autotuning, involving neural networks, is ferther developed. To make this approach adaptive, optimal PID values must be known on-line. In this paper neural network models of tuning criteria, together with the use of genetic algorithms, are proposed to solve this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.