2 resultados para Negative frequency-dependent selection
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Embedding a double barrier resonant tunnelling diode (RTD) in a unipolar InGaAlAs optical waveguide gives rise to a very low driving voltage electroabsorption modulator (EAM) at optical wavelengths around 1550 nm. The presence of the RTD within the waveguide core introduces high non- linearity and negative di erential resistance in the current±voltage (I±V) characteristic of the waveguide. This makes the electric ®eld distribution across the waveguide core strongly dependent on the bias voltage: when the current decreases from the peak to the valley, there is an increase of the electric ®eld across the depleted core. The electric ®eld enhancement in the core-depleted layer causes the Franz±Keldysh absorption band-edge to red shift, which is responsible for the electroabsorption e ect. High-frequency ac signals as low as 100mV can induce electric ®eld high-speed switching, producing substantial light modulation (up to 15 dB) at photon energies slightly lower than the waveguide core band-gap energy. The key di erence between this device and conventional p-i-n EAMs is that the tunnelling characteristics of the RTD are employed to switch the electric ®eld across the core-depleted region; the RTD- EAM has in essence an integrated electronic ampli®er and, therefore, requires considerably less switching power.
Resumo:
Blind deconvolution is studied in the underwater acoustic channel context, by time-frequency (TF) processing. The acoustic propagation environment is modelled by ray tracing and mathematically described by a multipath propagation channel. Representation of the received signal by means of a signal-dependent TF distribution (radially Gaussian kernel distribution) allowed to visualize the resolved replicas of the emitted signal, while signi cantly attenuating the inherent interferences of classic quadratic TF distributions. The source signal instantaneous frequency estimation was the starting point for both source and channel estimation. Source signature estimation was performed by either TF inversion, based on the Wigner-Ville distribution of the received signal, or a subspace- -based method. The channel estimate was obtained either via a TF formulation of the conventional matched- lter, or via matched- - ltering with the previously obtained source estimate. A shallow water realistic scenario is considered, comprising a 135-m depth water column and an acoustic source located at 90-m depth and 5.6-km range from the receiver. For the corresponding noiseless simulated data, the quality of the best estimates was 0.856 for the source signal, and 0.9664 and 0.9996 for the amplitudes and time-delays of the impulse response, respectively. Application of the proposed deconvolution method to real data of the INTIMATE '96 sea trial conduced to source and channel estimates with the quality of 0.530 and 0.843, respectively. TF processing has proved to remove the typical ill-conditioning of single sensor deterministic deconvolution techniques.