2 resultados para NATURAL MORTALITY
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
There is a concern that artificial reefs (AR) may act purely as fishing aggregation devices. Predators attracted to ARs can influence the distribution and abundance of prey fish species. Determining the role of predators in AR is important in advancing the understanding of community interactions. This paper documents the effects of predation on fish assemblages of AR located near a coastal lagoon fish nursery. The Dicentrarchus labrax is a very opportunistic species preying on juveniles (0(+) and 1(+) age classes) of several demersal fish species on the ARs. Reef prey and sea bass abundance were negatively correlated. The mean numbers of prey per sea bass stomach increased with the increase of reef fish prey abundance, suggesting that predation has a significant influence, resulting in a decrease in prey abundance. Prey mortality (4-48%) of demersal reef fish associated species depends on bass density. Prey selection was related both with prey abundance and vulnerability. Results showed that D. labrax predation on AR-fish associated species can increase prey natural mortality. However, the role of bass predation on the ecological functioning of exploited ARs is not clear. There may be increases in local fishing yields due either to an increase in predator biomass through aggregation of sea bass attracted to ARs or to greater production. In contrast, predation on juveniles of economically important reef fish preys, especially the most frequent and abundant (Boops boops), can contribute to a decrease in recruitment to the fishery. Our results indicate that inter-specific interactions (predator-prey) are important in terms of conservation and management, as well as for the evaluation of the long-term effects of reef deployment. Thus, it is necessary to consider ecological interactions, such as predation, prior to the development and deployment of artificial habitats as a tool for rehabilitation.
Resumo:
The deep-sea lantern shark Etmopterus spinax occurs in the northeast Atlantic on or near the bottoms of the outer continental shelves and slopes, and is regularly captured as bycatch in deep-water commercial fisheries. Given the lack of knowledge on the impacts of fisheries on this species, a demographic analysis using age-based Leslie matrices was carried out. Given the uncertainties in the mortality estimates and in the available life history parameters, several different scenarios, some incorporating stochasticity in the life history parameters (using Monte Carlo simulation), were analyzed. If only natural mortality were considered, even after introducing uncertainties in all parameters, the estimated population growth rate (A) suggested an increasing population. However, if fishing mortality from trawl fisheries is considered, the estimates of A either indicated increasing or declining populations. In these latter cases, the uncertainties in the species reproductive cycle seemed to be particularly relevant, as a 2-year reproductive cycle indicated a stable population, while a longer (3-year cycle) indicated a declining population. The estimated matrix elasticities were in general higher for the survivorship parameters of the younger age classes and tended to decrease for the older ages. This highlights the susceptibility of this deep-sea squaloid to increasing fishing mortality, emphasizing that even though this is a small-sized species, it shows population dynamics patterns more typical of the larger-sized and in general more vulnerable species. (C) 2014 Elsevier Ltd. All rights reserved.