4 resultados para Multivariate
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese de doutoramento, Métodos Quantitativos Aplicados à Economia e à Gestão, Faculdade de Economia, Universidade do Algarve, 2014
Resumo:
Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Taxonomic distinction to species level of deep water sharks is complex and often impossible to achieve during fisheries-related studies. The species of the genus Etmopterus are particularly difficult to identify, so they often appear without species assignation as Etmopetrus sp. or spp. in studies, even those focusing on elasmobranchs. During this work, the morphometric traits of two species of Etmopterus, E. spinax and E. pusillus were studied using 27 different morphological measurements, relatively easy to obtain even in the field. These measurements were processed with multivariate analysis in order to find out the most important ones likely to separate the two species. Sexual dimorphism was also assessed using the same techniques, and it was found that it does not occur in these species. The two Etmopterus species presented in this study share the same habitats in the overlapping ranges of distribution and are caught together on the outer shelves and slopes of the north-eastern Atlantic.
Resumo:
We identified and quantified the effect of season, depth, and inner and outer panel mesh size on the trammel net catch species composition and catch rates in four southern European areas (Northeast Atlantic: Basque Country, Spain; Algarve, Portugal; Gulf of Cadiz, Spain; Mediterranean: Cyclades, Greece), all of which are characterised by important trammel net fisheries. In each area, we conducted, in 1999-2000, seasonal, experimental fishing trials at various depths with trammel nets of six different inner/outer panel mesh combinations (i.e., two large outer panel meshes and three small inner panel meshes). Overall, our study covered some of the most commonly used inner panel mesh sizes, ranging from 40 to 140 mm (stretched). We analysed the species composition and catch rates of the different inner/outer panel combinations with regression, multivariate analysis (cluster analysis and multidimensional scaling) and other 'community' techniques (number of species, dominance curves). All our analyses indicated that the outer panel mesh sizes used in the present study did not significantly affect the catch characteristics in terms of number of species, catch rates and species composition. Multivariate analyses and seasonal dominance plots indicated that in Basque, Algarve and Cyclades waters, where sampling covered wide depth ranges, both season and depth strongly affected catch species compositions. For the Gulf of Cadiz, where sampling was restricted to depths 10-30 m, season was the only factor affecting catch species composition and thus group formation. In contrast, the inner panel mesh size did not generally affect multidimensional group formation in all areas but affected the dominance of the species caught in the Algarve and the Gulf of Cadiz. Multivariate analyses also revealed 11 different metiers (i.e., season-depth-species-inner panel mesh size combinations) in the four areas. This clearly indicated the existence of trammel net 'hot spots', which represent essential habitats (e.g., spawning, nursery or wintering grounds) of the life history of the targeted and associated species. The number of specimens caught declined significantly with inner panel mesh size in all areas. We attributed this to the exponential decline in abundance with size, both within- and between-species. In contrast, the number of species caught in each area was not related to the inner mesh size. This was unexpected and might be a consequence of the wide size-selective range of trammel nets. (c) 2006 Elsevier B.V All rights reserved.