2 resultados para Modelos de performance

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudoabsence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, the models generated obtain better accuracy scores, and over-prediction increases. When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study showsthat ifwe do not have reliable absence data, the method of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A performance dos detetores sísmicos atualmente utilizados pode e deve ser melhorada. Atualmente existem vários algoritmos para a deteção de sismos de forma automática, desde os sistemas simples baseados em STA/LTA, aos mais sofisticados baseados em reconhecimento de padrões. Este estudo pretende dar continuidade ao desenvolvimento de uma abordagem de deteção de eventos sísmicos ao nível da estação local, utilizando uma técnica bastante conhecida, chamada Máquina de Vetores de Suporte (SVM). SVM é amplamente utilizada em problemas de classificação, devido a sua boa capacidade de generalização. Nesta experiência, a técnica baseada em SVM é aplicada em diferentes modos de operações. Os resultados mostraram que a técnica proposta dá excelentes resultados em termos de sensibilidade e especificidade, além de exigir um tempo de deteção suficientemente pequeno para ser utilizado num sistema de aviso precoce (early-warning system). Começamos pela classificação de dados de forma Off-line, seguido da validação do classificador desenvolvido. Posteriormente, o processamento de dados é executado de forma contínua (On-line). Os algoritmos foram avaliados em conjuntos de dados reais, provenientes de estações sísmicas da Rede de Vigilância Sísmica de Portugal, e em aplicações reais da área de Sismologia (simulação de funcionamento em ambiente real). Apesar de apenas duas estações serem consideradas, verificou-se que utilizando a combinação de detetores, consegue-se uma percentagem de deteção idêntica para quando utilizado um único modelo (Abordagem OR) e o número de falsos alarmes para a combinação de modelos é quase inexistente (Abordagem AND). Os resultados obtidos abrem várias possibilidades de pesquisas futuras.