6 resultados para Minimization of open stack problem
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
In this paper we consider the learning problem for a class of multilayer perceptrons which is practically relevant in control systems applications. By reformulating this problem, a new criterion is developed, which reduces the number of iterations required for the learning phase.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimantion is small. For most of them the problem of finding an ε-approximate solution is already NP-hard.
Resumo:
Tese dout., Doctor of Philisophy, Sheffield Hallam University, 2001
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimention is small. For most of them the problem of finding an ε-approximate solution is already NP-hard. The branch-and-bound algorithms are the most used algorithms for solving exactly this sort of problems.
Resumo:
All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.
Resumo:
The purpose of this study was to evaluate the effectiveness of the Creative Problem Solving (CPS) method in improving the leadership process in a non-profit organization. The research was designed around an intervention and structured in three stages (pre-consult, intervention and follow-up), with a team designated by management, in order to bring leadership cohesion to both departments of the organization and also between the board and executive management. The results, expressed in the tasks performed and in the interviews to team members, allowed us to conclude on the effectiveness of the CPS method to improve organizational leadership, by establishing a stronger relationship between departments, as well as, in the long term, between the board and executive management. These results highlight possible solutions to improve the leadership of non-profit organizations.