3 resultados para Migration route
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The migration of the hypophysiotropic GnRH (GnRH-I) neurons during early development is a crucial step in establishing a normally functioning reproductive system in all vertebrates. These neurons derive from progenitor cells in the olfactory placode and subsequently migrate to their final position in the ventral forebrain, where they mediate hypophysiotropic control over Lh. We use zebrafish as a model to investigate the path and the factors that mediate the migration of the GnRH-I neurons during early development. A transgenic line of zebrafish, in which GnRH- I neurons specifically express a reporter gene (GFP) has been developed in our lab. This was achieved by integrating a GnRH-I promoter/GFP reporter transgene into the zebrafish genome. The resulting transgenic line allows us to track the route of the GnRH-I neuronal migration in real time and in vivo. We have used this line to conduct time lapse imaging to ascertain the exact migrational path and the final position in the ventral forebrain of the GnRH-I neurons.
Resumo:
Pelagic longliners targeting swordfish and tunas in oceanic waters regularly capture sharks as bycatch, including currently protected species as the bigeye thresher, Alopias superciliosus. Fifteen bigeye threshers were tagged with pop-up satellite archival tags (PSATs) in 2012-2014 in the tropical northeast Atlantic, with successful transmissions received from 12 tags for a total of 907 tracking days. Marked diel vertical movements were recorded on all specimens, with most of the daytime spent in deeper colder water (mean depth = 353 m, SD = 73; mean temperature = 10.7 °C, SD = 1.8) and nighttime spent in warmer water closer to the surface (mean depth = 72 m, SD = 54; mean temperature = 21.9 °C, SD = 3.7). The operating depth of the pelagic longline gear was measured with Minilog Temperature and Depth Recorders (TDRs), and the overlap with habitat utilization was calculated. Overlap is taking place mainly during the night and is higher for juveniles. The results presented herein can be used as inputs for Ecological Risk Assessments for bigeye threshers captured in oceanic tuna fisheries, and serve as a basis for efficient management and conservation of this vulnerable shark species.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015