4 resultados para Medidas de estabilização

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mest., Gestão e Conservação da Natureza, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente documento constitui o relatório final do projecto “Estudo dos Sistemas Agrários Tradicionais”, executado em parceria com a Consejería de Agricultura Y Pesca da Junta da Anadalucía, no âmbito da Iniciativa Comunitária Interreg II (Programa Operativo Interregional II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregation and fibrillation of proteins have a great importance in medicine and industry. Misfolding and aggregation are the basis of many neurodegenerative diseases like Alzheimer and Parkinson. Osmolytes are molecules that can accumulate within cells and act as protective agents and they can inclusively act as protein stabilizers when cells are exposed to stress conditions. Osmolytes can also act as protein stabilizers in vitro. In this work, two different proteins were studied, the ribosomal protein from Thermus thermophilus and the mouse prion protein. The existence of an unstructured N-terminal on the prion protein does not affect its stability. The effect of the osmolyte sucrose on the fibrillation and stabilization of these two proteins was studied through kinectic and equilibrium measurements. It was shown that sucrose is able to compact the native structure of S6 protein in fibrillization conditions. Sucrose affects also folding and unfolding kinetic of S6 protein, delaying unfolding and increasing folding rate constants. The mechanism of stabilization by sucrose is non-specific because it is distributed for all protein structure, as it was demonstrated by a protein engineering approach. Sucrose delays the process of formation and elongation of S6 and prion protein from mouse. This delay is the result of the compaction of the native structure refered above. However, cellular toxicity studies have shown that fibrils formed in the presence of sucrose are more toxic to neuronal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015