5 resultados para MORPHOGENESIS
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium.
Resumo:
The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.
Resumo:
Tese de dout., Biologia (Biologia Molecular), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Epithelial tissues are essential during morphogenesis and organogenesis. During development, epithelial tissues undergo several different remodeling processes, from cell intercalation to cell change shape. An epithelial cell has a highly polarized structure, which is important to maintain tissue integrity. The mechanisms that regulate and maintain apicobasal polarity and epithelial integrity are mostly conserved among all species and in different tissues within the same organism. aPKC-PAR complex localizes in the apical domain of polarized cells, and its function is essential for apicobasal polarization and epithelial integrity. In this work we characterized two novel alleles of aPKC: a temperature sensitive allele (aPKCTS), which has a point mutation on a kinase domain, and another allele with a point mutation on a highly conserved amino acid within the PB1 domain of aPKC (aPKCPB1). Analysis of the aPKCTS mutant phenotypes, lead us to propose that during development different epithelial tissues have differential requirements of aPKC activity. More specifically, our work suggests de novo formation of adherens junctions (AJs) is particularly sensitive to sub-optimal levels of apkc activity. Analysis of the aPKCPB1 allele, suggests that aPKC is likely to have an apical structural function mostly independent of its kinase activity. Altogether our work suggests that although loss of aPKC function is associated to similar epithelial phenotypes (e.g., loss of apicobasal polarization and epithelial integrity), the requirements of aPKC activity within these tissues are nevertheless likely to vary.
Resumo:
Ojoplano (opo) is a vertebrate-specific gene that was first identified in medaka fish as a recessive mutant, showing both neural crest defects and a failure of optic cup folding. In humans, this gene is associated with genetic diseases including hereditary craniofacial malformations and schizophrenia. It is localized in a 2Mb gene desert flanked by insulator sequences, between the genes SLC35B and TFAp2a. This region, syntenic between all vertebrates, represents only 2% of chromosome 6. However, it includes 23% of the all conserved cis-regulatory elements in this chromosome. Using transgenesis assays in zebrafish, we screened the enhancer activity of this locus and obtain a collection of nine enhancers. These regulatory elements were all conserved from human to teleosts and showed epigenetic marks for enhancer activity. We could associate multiple enhancers with ororfacial celfting disease and in order to explore the functionality of the enhancers, we performed a bioinformatics analysis to search for transcription factor bindings in the enhancer sequences. In terms of gene regulation we observe that H6:10137 opo enhancer has two Vsx2 binding sites and that this transcription factor regulates the expression of opo during eye development. Our findings suggest that the regulation of Vsx2 over opo is essential for optic cup folding. So far, there is no clear connection between optic cup patterning and morphogenesis. Vsx2 provides this link by controlling the expression of opo.