2 resultados para MITOCHONDRIAL CONTROL

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fish belonging to the genus Macroramphosus are distributed throughout the Atlantic, Indian and PaciWc oceans. Some authors consider this genus monotypic, Macroramphosus scolopax being the only valid species. Other authors consider (based on several morphological and ecological characters) that another species (Macroramphosus gracilis) exists and occurs frequently in sympatry with the Wrst one. Intermediate forms are also reported in literature. In this paper, using the mitochondrial control region and the nuclear Wrst S7 intron markers, we failed to Wnd genetic diVerences between individuals considered to belong to both species as well as the intermediate forms. Our results suggest that in the northeastern Atlantic, Macroramphosus is represented by a single species, M. scolopax, with diVerent morphotypes interbreeding in the sampling areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partial sequences of the mitochondrial control region and its comparison with previously published cytochrome b (cyt-b) and microsatellite data were used to investigate the influence of island isolation and connectivity on white seabream genetic structure. To achieve this, a total of 188 individuals from four island localities (Castellamare and Mallorca, Mediterranean Sea; Azores and Canary Islands, Atlantic Ocean) and five coastal localities (Banyuls, Murcia and Tunisia, Mediterranean Sea; Galicia and Faro, Atlantic Ocean) were analysed. Results showed high haplotype diversity and low to moderate nucleotide diversity in all populations (except for the Canary Islands). This pattern of genetic diversity is attributed to a recent population expansion which is corroborated by other results such as cyt-b network and demographic analyses. Low differentiation among Mediterranean/Atlantic and coastal/island groups was shown by the AMOVA and FST values, although a weak phylogeographic break was detected using cyt-b data. However, we found a clear and significant island/ distance effect with regard to the Azores islands. Significant genetic differentiation has been detected between the Azores islands and all other populations. The large geographical distance between the European continental slope and the Azores islands is a barrier to gene flow within this region and historic events such as glaciation could also explain this genetic differentiation.