3 resultados para MC-RR
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
MC-CDMA (MultiCarrier Code Division Multiple Access), currently regarded as a promissing multiple access scheme for broadband communications, is known to combine the advantages of an OFDM-based (Orthogonal Frequency Division Multiplexing), CP-assisted (Cyclic Prefix) block transmission with those of CDMA systems. Recently, it was recognised that DS-CDMA (Direct Sequence) implementations can also take advantage of the beneficts of the CP-assisted block transmission approach, therefore enabling an efficient use of FFT-based (Fast Fourier Transform), chip level FDE (Frequency- Domain Equalisation) techniques. In this paper we consider the use of IB-DFE (Iterative Block Decision Feedback Equalisation) FDE techniques within both CP-assisted MC-CDMA systems with frequency-domain spreading and DS-CDMA systems. Our simulation results show that an IB-DFE receiver with moderate complexity is suitable in both cases, with excellent performances that can be close to the single-code matched filter bound (especially for the CP-assisted DSCDMA alternative), even with full code usage.
Resumo:
In this paper, we consider low-PMEPR (Peak-to-Mean Envelope Power Ratio) MC-CDMA (Multicarrier Coded Division Multiple Access) schemes. We develop frequencydomain turbo equalizers combined with an iterative estimation and cancellation of nonlinear distortion effects. Our receivers have relatively low complexity, since they allow FFT-based (Fast Fourier Transform) implementations. The proposed turbo receivers allow significant performance improvements at low and moderate SNR (Signal-to-Noise Ratio), even when a low-PMEPR MC-CDMA transmission is intended.
Resumo:
We consider MC-CDMA schemes, with reduced envelope fluctuations. Both CP-assisted (cyclic prefix) and ZP (zero-padded) MC-CDMA schemes are addressed. We develop turbo FDE (frequency-domain equalization) schemes, combined with cancelation of nonlinear distortion effects. The proposed turbo receivers allow significant performance improvements at low and moderate SNR, even when the transmitted signals have reduced envelope fluctuations.